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Foreword vii

FOREWORD

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, 
characterized by degeneration of both upper motor neurons including motor 
 cortex of the cerebrum and lower motor neurons in the brainstem and the spinal 
cord. Because of the rapid progression of muscular weakness and atrophy during 
the course of the disease and the lack of curative therapy with an estimated 
 mortality of 30,000 patients a year worldwide, ALS is often said to be the most 
devastating neurodegenerative disorder in adults. 

Since the approval of riluzole by the US Food and Drug Administration in 
1995, many clinical trials have failed until the recent approval of edaravone. Both 
riluzole and edaravone are disease modifying drugs with limited benefits, and 
neither of them are curative. There are several on-going clinical trials with differ-
ent mechanistic concepts. These include small molecules AMX0035 (combination 
of sodium phenylbutyrate and tauroursodeoxycholic acid) and mastinib (c-kit 
inhibitor), antisense nucleotide drug tofersen (antisense for superoxide dismutase 1), 
humanized monoclonal antibody ravulizumab-cwvz (antibody against C5 com-
plement), and mesenchymal stem cell (MSC)-neurotrophic factor (NTF) cells as 
cell-based therapy. Furthermore, there are a large number of different potential 
therapies in basic research stage. Future therapies against ALS may well come out 
from these endeavors. 

Novel groundbreaking therapy against intractable diseases like ALS can only 
originate from basic research based on the sufficient understanding of clinical 
features and disease pathophysiology. This book encompasses different aspects 
from basic research to clinical characteristics of ALS. While the covered areas may 
be limited as a single book of eight chapters, these chapters, contributed by prac-
ticing clinicians and active basic scientists, will inspire ALS researchers in labora-
tories and clinics, and lead to a further understanding of the disease and 
development of novel therapies that will eventually help patients suffering from 
this intractable condition. 

Takeshi Iwatsubo, MD, PhD
Director, National Institute of Neuroscience

National Center of Neurology and Psychiatry, Japan.
Professor, Department of Neuropathology 

Graduate School of Medicine 
The University of Tokyo, Japan

Doi: https://doi.org/10.36255/exonpublications.amyotrophiclateralsclerosis.
foreword.2021
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PREFACE

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative 
 disorder characterized by motor neuron cell death in the brain and spinal cord. 
The typical disease symptom is the rapid loss of muscle control, which eventually 
leads to the complete paralysis of voluntary muscles of the entire body. While 
there are some treatments to help manage symptoms, there is no curative  treatment 
for ALS. The rarity of the disease and the difficulties in accurate early diagnosis are 
the major challenges in the proper understanding of the disease and the develop-
ment of curative therapy. This book brings together a team of experts, both 
 clinicians and basic scientists, to provide a comprehensive understanding of ALS, 
challenges, and approaches to combat this devastating disease. There are eight 
chapters in the book. 

The first chapter provides a comprehensive review of the clinical manifesta-
tion and management of ALS. It discusses the clinical subtypes and the impor-
tance of recognition of these subtypes for better prognosis. The pathological 
features and the management of the disease are also discussed. Early diagnosis of 
ALS is vital to initiate effective therapies, and diagnostic delay––which can be 
more than a year from symptom onset––is a major challenge because ALS mimics 
other neurological disorders. Chapter 2 addresses time to diagnosis, various fac-
tors affecting diagnostic delay, and potential interventions to decrease time to 
diagnosis of ALS. 

The role of glial cells in the onset and progression of ALS is increasingly being 
recognized. Dysfunctional astrocytes in the cerebral cortex and the spinal cord 
promote neuroinflammation and motor neuron degeneration. Chapter 3 discusses 
the contribution of dysfunctional cortical and spinal cord astrocytes in the devel-
opment and progression of ALS. Although the primary feature of ALS is the selec-
tive loss of motoneurons in the brain and spinal cord, changes in synaptic 
transmission and motoneuron excitability are among the first events that take 
place during development and the subsequent relentless deterioration of motor 
circuitry. Chapter 4 provides a comprehensive description of our current under-
standing of defects in intrinsic electrophysiological properties of motoneurons, 
along with potential therapeutic options to target synaptic transmission and 
intrinsic features of motoneurons. Since neurons have long neurites, the transport 
of essential mRNAs and their translation locally in axons are essential to maintain 
the shape and function of the neurons. Several RNA-binding proteins are involved 
in the process. Chapter 5 outlines the role of RNA-binding proteins, with empha-
sis on TDP-43, in axonal transport and local translation of mRNAs in ALS. 

In addition to the diagnostic delay as mentioned above and given that the 
median life expectancy is 3 years, it is important to shorten the diagnostic journey 
and initiate therapies promptly. Biomarkers may be the key to enhancing early 
diagnosis, tracking disease progression, and testing target engagement of promis-
ing therapeutics. Although clinically validated biomarkers for ALS is lacking, 
Chapter 6 provides a snapshot of our current understanding of blood-based 
 biomarkers for ALS and discuss the future research directions. To date, there is no 
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curative pharmacological treatment for ALS. A growing body of evidence show 
cell therapy as a promising therapeutic alternative for ALS. Chapter 7 discusses 
the therapeutic potential of various genetically engineered cell types, including 
induced pluripotent stem cells. The promises and challenges of this approach are 
also presented. Finally, Chapter 8 directs the reader to a possible new player in 
ALS––the gut and its microbiota. This chapter outlines the relationship between 
ALS and the human microbiota, discussing whether an imbalance in intestinal 
microbiota composition through a pro-inflammatory dysbiosis promotes a sys-
temic immune/inflammatory response and has a role in ALS pathogenesis.

I thank the authors for their contribution, diligence, and professional-
ism. There is much to learn about ALS. The individual chapters provide 
excellent views into key topics of ALS. The book is primarily aimed at clini-
cians and basic scientists; however, it will likely be of interest to a wide 
audience interested in ALS. 

Toshiyuki Araki, MD, PhD
Director

Department of Peripheral Nervous System Research
National Institute of Neuroscience

National Center of Neurology and Psychiatry, Japan
Doi: https://doi.org/10.36255/exonpublications.amyotrophiclateralsclerosis.

preface.2021
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In: Amyotrophic Lateral Sclerosis. Araki T (Editor), Exon Publications, Brisbane, Australia. 
ISBN: 978-0-6450017-7-8. Doi: https://doi.org/10.36255/exonpublications.
amyotrophiclateralsclerosis.2021

Copyright: The Authors.

License: This open access article is licenced under Creative Commons Attribution-NonCommercial 
4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

Abstract: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neuro-
degenerative disease resulting in death in 2 to 4 years in most cases. There are 
several clinical subtypes of ALS depending on the degree of upper and lower 
motor neuron involvement, and recognition of these subtypes is important 
because certain subtypes have better prognosis. Without a reliable biomarker, ALS 
is a clinical diagnosis supported by laboratory investigations. The etiology of ALS 
remains unknown. However, mutations in certain genes cause ALS in about 5–8% 
of cases and understanding molecular pathogenetic pathways in these cases may 
pave a way for effective therapies. There is currently no cure or meaningfully 
effective therapy for ALS. Supportive and palliative measures in multidisciplinary 
ALS clinics are exceedingly important to maintain and improve the quality of life 
in patients with ALS. This chapter summarizes the clinical features and manage-
ment of ALS.

Keywords: amyotrophic lateral sclerosis; motor neuron; muscular atrophy; 
 primary lateral sclerosis; progressive bulbar palsy

Clinical Manifestation and 
Management of Amyotrophic 
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INTRODUCTION

Motor neuron diseases encompass a group of related degenerative disorders of 
motor neurons in the motor cortex, brainstem, and the spinal cord which mani-
fest clinically by muscular weakness, atrophy, and corticospinal tract signs in 
varying combinations. Amyotrophic lateral sclerosis (ALS), a prototypic motor 
neuron disease (MND), is a progressive disease of middle life that leads to death 
in 2 to 4 years in most cases (1–3).

Jean Martin Charcot (1825–1893), a French neurologist, originally delineated 
the clinical and pathologic aspects of ALS and recommended the term amyo-
trophic lateral sclerosis (4). In a series of lectures given in the 1870s, he provided 
a lucid account of the clinical and pathologic findings of ALS. In the United States, 
Lou Gehrig, a baseball legend, suffered ALS at age 38 and died 3 years later, and 
ALS is also named Lou Gehrig disease. Although called Charcot disease in France, 
MND in the United Kingdom, and Lou Gehrig disease in the United States, ALS 
has been a preferred term all over the world.

The annual incidence rate of ALS is at 0.6 to 1.8, and prevalence at 4 to 8 per 
100,000 population (5–8). The disease occurs in a random pattern throughout 
the world except for a clustering of patients among inhabitants of Guam, West 
New Guinea and Kii Peninsula where ALS is often combined with dementia and 
parkinsonism (9, 10). The ALS is about one-and-half times more common in men 
than woman (1). Most patients are older than 50 years, and the incidence increases 
further with later age (5). In 10–15% cases of ALS, an additional diagnosis of 
frontotemporal dementia (FTD) can be made (7, 11–13). FTD is characterized by 
the degeneration of frontal and anterior temporal lobes and presents clinically by 
behavioral changes, impaired executive function, and language dysfunction 
(12, 13). ALS and FTD are now considered two ends of a spectrum due to the 
overlap in genetic and molecular mechanisms underlying both these neurodegen-
erative disorders (12, 13). In 5–8% of cases the ALS is familial (fALS), being 
inherited in autosomal dominant trait with age-dependent penetrance. A hexa-
nucleotide repeat sequence of C9orf72 gene mutation accounts for approximately 
35% of fALS cases (7, 11, 12). Another 15–20% of fALS cases occur from SOD1 
gene mutation (14). Over 20 additional genes are linked to fALS, chief among 
them being TDP43, FUS, ANG, VCP, and OPTN (7, 15–17). The familial cases as a 
group differ clinically from sporadic cases in their earlier age of onset, equally 
affected males and females, and slightly rapid disease progression.

CLINICAL FEATURES: ALS SUBTYPES BASED ON UPPER AND 
LOWER MOTOR NEURON INVOLVEMENT

ALS in its classic form with amyotrophy (denervation atrophy and weakness of 
muscles) and lateral sclerosis (corticospinal tract degeneration in the lateral col-
umns of the spinal cord) occurs in approximately 85% of cases. Less frequent are 
cases in which weakness and atrophy occurs alone, without evidence of cortico-
spinal tract dysfunction, and it is called progressive muscular atrophy (PMA). 
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When the predominant muscle weakness and atrophy occurs in bulbar territory 
muscles (muscles of the tongue, pharynx, larynx, jaw, and face), it is called pro-
gressive bulbar palsy or progressive bulbar atrophy (PBA). In minority of patients, 
the clinical state is dominated by pyramidal tract degeneration with spastic limbs 
and hyperreflexia, with lower motor neuron signs becoming apparent only at a 
later stage or not at all. This is called primary lateral sclerosis (PLS), an infrequent 
form of ALS in which the disease process involves only the corticospinal tract 
pathways, sparing the anterior horn cells in the spinal cord and brainstem. It is 
important to recognize these subtypes of ALS, because the prognosis in syndromes 
with the isolated upper or lower motor neuron degeneration is better than in clas-
sic ALS with mixed upper and lower motor neuron involvement (2, 3).

Classical amyotrophic lateral sclerosis

The ALS in classic form is insidious in onset and progressive in clinical course and 
consists of both upper and lower motor neuron involvement (1). Most typically, 
the disease onset is perceived by the patient as slight weakness in the distal part of 
one limb. It then progresses and spreads in the adjacent part of the affected limb. 
For example, it is noted first as an unexplained tripping from slight foot drop with 
atrophy and stiffness of leg muscles on one side. That is, features of lower motor 
neuron (weakness and atrophy) or upper motor neuron (stiffness) or both degen-
erations appear insidiously in one leg. A footdrop with weakness and wasting of 
the anterior tibial muscles may give an impression of peroneal nerve compression 
until painless weakness of the calf muscles and thigh muscles, along with normal 
sensory examination, declares more widespread involvement of lumbosacral 
neurons. As the disease progresses and spreads, the motor deficit is noted on the 
opposite side with the subsequent asymmetrical progression in both legs. 

In hand-onset ALS, weakness is noted first by mild difficulty in tasks requiring 
fine finger movements (writing, buttoning, etc.), stiffness of fingers, and slight 
weakness or wasting of hand muscles on one side. Muscle contraction-induced 
cramps and fasciculation of the muscles of the shoulder girdle, upper arm, and the 
forearm may also arise. Thumb and finger abductors, adductors and extensors 
become weak while the long finger flexors are relatively spared with preserved 
hand grip. The weakness and atrophy of dorsal interossei and forearm extensor 
muscles resulting in hallowed intermetacarpal spaces and partial wrist drop may 
impart a cadaveric or skeletal hand (Figure 1). With further progression and over 
time, the constellation of atrophic hand and forearm muscles, fasciculations, along 
with slight spasticity of the arms and generalized hyperreflexia – without sensory 
or autonomic changes – leaves little doubt as to the ALS diagnosis. Later, the atro-
phic weakness spreads to the neck, tongue, pharyngeal, and laryngeal muscles and 
eventually those in the trunk and lower extremities, declaring the devastation of 
the disease. One of the hallmarks of the disease is despite the amyotrophy, the ten-
don reflexes are notably active. Babinski and Hoffman signs are variably present.

In about 25 percent of cases, the disease may first start in bulbar (lower brain-
stem) territory with the attendant difficulty in speaking, swallowing, and handling 
of saliva (1). Examination in such cases may show atrophic, shriveled and weak 
tongue (Figure 2) with fasciculation and saliva drooling from the angle of the 
mouth. 
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Figure 1. Hand-onset ALS showing asymmetric atrophy and weakness of hand and forearm muscles.

Figure 2. Bulbar onset ALS with tongue atrophy weakness.
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Rarely, involvement of thoracic, abdominal, posterior neck muscles, or dia-
phragm muscle occurs in early course resulting in camptocormia (forward bend-
ing of the neck and trunk), head drop, or early respiratory failure in affected 
individuals (1).

The first and dominant manifestations of ALS may be a spastic weakness of the 
legs, in which case a diagnosis of PLS is tentatively made (1). Only after months 
or a year or so, do the hand and arm muscles weaken, waste, and fasciculate, mak-
ing it obvious that both upper and lower motor neurons are diseased. On occa-
sion, the disease may commence with spasticity of bulbar territory muscles with 
speech and swallowing difficulty, brisk jaw and facial reflexes, but without muscle 
atrophy, and it is called pseudobulbar palsy.

Coarse fasciculations are usually evident in the weakened muscles but may not 
be noticed by the patient until the physician calls attention to them (1–3). The 
weak and atrophied limb parts may feel cold and achy, but actual numbness or 
paresthesia, except from poor positioning of the weak limb and focal pressure or 
compression neuropathies, do not occur in ALS. Sphincter function is well main-
tained even after both legs have become weak and spastic. 

The clinical course of ALS, regardless of its mode of onset and topography of 
spread and evolution, is progressive. Patient may sometimes observe short peri-
ods of stable weakness lasting for weeks or a few months; however, objective 
changes will be detected in almost all cases. Approximately 50% of patients suc-
cumb within 2 to 3 years and 90% within 5 years of disease onset, almost all from 
respiratory failure (1, 2, 3, 8, 18).

Progressive muscular atrophy

These purely lower motor neuron amyotrophies are more common in men than 
in women, they progress at a slower rate, and the majority of these patients sur-
vive more than 5 years (2, 18). In one large cohort of 155 patients with PMA (18), 
the authors reported a relatively more benign course in younger patients; 72% of 
patients with disease onset before age 50 survived over 5 years, compared to 40% 
of patients with onset after 50 years (18). In about half the patients, the PMA 
phenotype commences in distal arms with asymmetric weakness and atrophy of 
hand muscles and then it advances to forearm and arm muscles (Figure 1). Less 
frequently, the legs and thighs are the sites of the initial atrophic weakness, or the 
proximal parts of the arms are affected before the distal ones. Fascicular twitching 
and cramping are common. PMA typically differs from classical ALS in dimin-
ished or absent tendon reflexes and undetectable clinical signs of corticospinal 
tract involvement. However, at autopsy corticospinal tract changes are noted in 
these cases (19).

The PMA may clinically mimic immune-mediated motor neuropathy that 
occurs with or without multifocal motor conduction block of electrical conduc-
tion and less often inclusion body myositis (described below).

Progressive bulbar palsy

In progressive bulbar palsy, first and dominant symptoms relate to weakness 
and atrophy of muscles innervated by the motor nuclei of the lower brainstem. 



Verma A6

This weakness gives rise to an early defect in articulation and swallowing. As the 
condition worsens, syllables lose their clarity and run together, until, finally, the 
patient’s speech becomes unintelligible. Usually, the voice is altered by a combina-
tion of atrophic and spastic weakness. Defective speech modulation with variable 
degrees of rasping and nasality is another characteristic. Chewing of food and 
swallowing become impaired; the food bolus cannot be manipulated efficiently, 
and this can lead to lodging of food between the cheek and teeth and difficulty in 
propelling it properly into the esophagus. Liquids and small crumbs of food may 
find their way into the larynx and trachea with episodes of coughing and choking. 
Ineffective closure of nasopharynx can result in fluid regurgitation through the 
nose. Fasciculations and atrophy of the tongue muscle are usually early clinical 
signs in PBA (Figure 2). Eventually the tongue bulk is lost, and it lies useless on 
the floor of the mouth.

As the disease progresses in PBA, the pharyngeal reflex is lost, and the palate 
and vocal cords move imperfectly or not at all during attempted phonation. The 
jaw jerk may be present or exaggerated at a time when the muscles of mastication 
are markedly weak. Spastic weakness of the bulbar territory muscles may be the 
initial manifestation of bulbar palsy without regional muscle atrophy and in such 
cases the pseudobulbar signs (pathologic laughing and crying) may become a 
prominent and embarrassing clinical feature. As with other subtypes of ALS, the 
clinical course of bulbar palsy is relentlessly progressive. Eventually the weakness 
spreads to the respiratory muscles and deglutition fails entirely. In general, the 
earlier the onset of the bulbar weakness, the shorter the course of the disease (18).

Primary lateral sclerosis

PLS can be considered another subtype of ALS occurring in 2–4% of cases (1, 20). 
Most patients, in whom the early signs of corticospinal tract degeneration suggest 
the presence of ALS, will develop clinical or electromyographic evidence of lower 
motor neuron involvement within 6–12 months. Some cases, however, have a 
slowly progressive corticospinal tract disorder that begins with a pure spastic 
paraparesis; later, the arms and oropharyngeal muscles become involved, and the 
disease remains one solely of the upper neurons (20).

The typical case begins insidiously in the fifth or sixth decade with asymmetric 
stiffness in legs with slowing of gait; leg spasticity and imbalance predominates 
over weakness as the disease progresses. Walking is still possible with the help of 
a cane for many years after the onset, although falls become frequent. Eventually 
this phenotype acquires the characteristic features of a severe spastic paraparesis. 
Over the years, finger movements loose dexterity, the arms become spastic, and, 
if the illness persists for several years, spastic dysarthria and pseudobulbar palsy 
is added to clinical features. Infrequently, the PLS may begin with spasticity in 
one-sided limbs (Mill’s hemiparetic pattern) or in bulbar territory muscles (pseu-
dobulbar paresis).

Pathologic studies in a limited number of cases have disclosed a relatively 
stereotyped pattern of reduced numbers of Betz cells in the frontal and pre-
frontal motor cortex, degeneration of the corticospinal tracts, also evident on 
MRI (Figure  3), and preservation of motor neurons in the spinal cord and 
brainstem (20). 
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Figure 3. T2-weighted coronal (3a, top) and FLAIR axial (3b, bottom) MRI showing signal changes 
that reflect Wallerian degeneration in the corticospinal tracts (Courtesy Dr. Rita G. Bhatia).
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PATHOLOGICAL FEATURES

The pathognomonic finding in ALS is loss of motor neurons in the anterior horns 
of the spinal cord, motor nuclei of the lower brainstem (lower motor neurons), 
and motor cortex of cerebrum (upper motor neurons). Large alpha motor neurons 
tend to be affected before small ones. In addition to neuronal loss, there is evi-
dence of slight gliosis and proliferation of microglia cells. Many of the surviving 
nerve cells are small and shrunken. In the affected motor neurons, ubiquitin 
inclusions in threads or dense aggregates can be demonstrated by special stains 
(1, 3, 12). The anterior roots are thin corresponding to large axon loss, and there 
is a disproportionate loss of large myelinated fibers in motor nerves (21). The 
muscles show typical denervation atrophy of different ages. 

The lower part of the spinal cord shows the corticospinal tract degeneration 
most prominently; however, the degeneration can be traced up through the brain-
stem to the posterior limb of the internal capsule and corona radiata by myelin 
stains. The loss of Betz cells in the motor cortex corresponds to corticospinal tract 
degeneration and this is manifested as a slight frontal lobe atrophy on the MRI, 
but it is not a prominent finding in most ALS cases. In FTD cases, in addition to 
the usual loss of cortical motor neurons, an extensive neuronal loss, gliosis, and 
vacuolation involving the frontal premotor area, particularly the superior frontal 
gyri and the inferolateral cortex of the temporal lobes, is evident (12).

Laboratory investigations and differential diagnosis

ALS is primarily a clinical diagnosis. The lack of a reliable biological marker, 
highly variable initial clinical presentation, and its clinical overlap with other late-
age degenerative disorders make it difficult to diagnose ALS with certainty in early 
stages. There is an average delay of 6 to 15 months from the onset of symptoms to 
confirmation of diagnosis (2, 3, 18). The El Escorial criteria for diagnosing ALS 
was published in 1994 by the World Federation of Neurology (22). The hierarchi-
cal diagnostic categories were created chiefly for inclusion standards for patients 
entering research studies and clinical trials (22). The El Escorial ALS diagnostic 
criteria were revised to include laboratory features in Arlie House Criteria in 1998 
(Table 1). The Awaji-Shima Criteria of 2000 consider electrophysiological features 
equivalent to clinical lower motor neuron involvement (23). A definitive diagno-
sis of ALS requires evidence of lower motor neuron and upper motor neuron 
involvement in at least three of four anatomic regions (cranial, cervical, thoracic, 
and lumbar regions). Clinically definite ALS shows progression and spread of 
degeneration or signs within or toward another anatomical regions. More impor-
tantly, the laboratory, electrophysiological, and neuroimaging results should not 
show evidence of other pathological processes that could explain the observed 
clinical presentation and thus exclude ALS.

Although, there is no definite marker to diagnose ALS, investigations provide 
useful confirmatory evidence even in the atypical clinical syndrome (1–3). The 
EMG, as expected, displays widespread fibrillations and positive sharp waves (evi-
dence of active denervation) and fasciculations and enlarged motor units (denot-
ing reinnervation). Motor conduction studies may show drop in combined muscle 
action potential (muscle atrophy) and only slight slowing, without focal motor 
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conduction block. If the atrophic paresis is restricted to an arm or hand, raising 
the question of cervical spondylosis, evidence of denervation in many widely sep-
arated somatic segments favors the diagnosis of ALS. Widespread denervation of 
the thoracic paraspinal muscles and the tongue muscle or facial muscles strongly 
suggest the disease, as these myotomal involvement is not a feature of cervical or 
lumbar spondylosis. Sensory nerve action potentials are typically normal in ALS. 
When in a typical case the amplitudes of sensory nerve action potentials are 
reduced, there is usually an underlying compression neuropathy or an unrelated 
neuropathy from diabetes or other cause. Serum creatinine kinase (CK) is moder-
ately elevated in half of patients (1). The CSF protein is usually normal or margin-
ally elevated. A muscle biopsy though helpful in corroborating neurogenic 
denervation is not needed in ALS.

In patients with prominent corticospinal signs, the MRI may show slight atro-
phy of the motor cortex and signal changes indicating Wallerian degeneration of 
the corticospinal tracts (Figure 3). These changes may be diagnostically useful 
when the presence of severe LMN deficit makes pyramidal tract signs unobvious. 
Corticospinal tract degeneration appears as an increased FLAIR and T2 signal 
intensity in the posterior limb of the internal capsule, descending motor tracts of 
the brainstem, and spinal cord (1–3). These MRI signs however are generally 
subtle and often missed.

The early clinical picture of ALS is closely simulated by cervical spondylosis or 
ruptured cervical disc with regional myeloradiculopathy, but with these condi-
tions there is usually pain in the neck and shoulders, limitation of neck move-
ments, sensory impairment, and the lower motor neuron changes are restricted to 
1 or 2 spinal segments (1). The EMG showing multi-segmental ongoing active 

TABLE 1 Revised El Escorial classification of ALS (22, 23). 
Four anatomical regions, bulbar, cervical, 
thoracic, and lumbar are included for disease 
stratification

Diagnostic category Inclusion criteria

Definite ALS Presence of upper motor neuron and lower motor neuron signs in 
three anatomical regions

Probable ALS Presence of upper motor neuron and lower motor neuron signs in at 
least two regions with upper motor neuron sign rostral to lower 
motor neuron signs

Probable ALS, laboratory 
results supported

Presence of upper motor neuron and lower motor neuron signs 
in one region with evidence by EMG of lower motor neuron 
involvement in another region

Possible ALS Presence of upper motor neuron and lower motor neuron signs in 
one region or upper motor neuron signs in two or three regions, 
such as monomelic ALS, progressive bulbar palsy, and primary 
lateral sclerosis
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denervation and reinnervation is particularly helpful in differentiating ALS from 
these disorders. An isolated and mild hemiparesis or monoparesis because of mul-
tiple sclerosis may be difficult to distinguish from early ALS and PLS. Leg-onset 
PMA may be differentiated from peroneal muscular atrophy (Charcot-Marie-Tooth 
disease) by asymmetrical clinical course, the complete lack of sensory change, 
lack of family history, and EMG pattern.

The differentiation of PMA from chronic motor neuropathies, particularly 
the form that displays multifocal conduction block, poses a major consider-
ation (1–3). An extensive nerve conduction studies and EMG examinations are 
necessary to distinguish multifocal motor neuropathy from PMA. The presence 
of an IgM monoclonal paraproteinemia or of specific antibodies directed against 
the GM1 ganglioside are usually indicative of the immune motor neuropathy, 
but in half of the cases these laboratory tests are negative (1). A leg form of PMA 
may be confused with inflammatory myopathy, specifically inclusion body 
myositis. A rare form of subacute paraneoplastic poliomyelitis in patients with 
lymphoma or carcinoma that leads to an amyotrophy and progression to death 
over a period of several months has been reported (24). Another rare condition 
in young men with localized and asymmetrical amyotrophy of the forearm that 
became arrested and does not advance over a decade or more is called juvenile 
MND (25).

The main considerations in relation to progressive bulbar palsy are myasthenia 
gravis and especially the inherited type of bulbospinal atrophy, the Kennedy’s 
disease (26). The spastic form of bulbar palsy may suggest the pseudobulbar palsy 
of lacunar disease and can be a prominent part of the progressive supranuclear 
palsy.

The differential diagnosis of the purely spastic state of primary lateral sclerosis 
is broad and includes compressive and noncompressive myelopathies, multiple 
sclerosis, adrenomyeloneuropathy, HTLV-1 associated myelopathy, vitamin B12 or 
copper deficiency states, familial spastic paraparesis, and lacunar states.

MANAGEMENT

The effect of available treatment for ALS is modest. Two drugs, Riluzole and 
Edaravone, are approved for ALS; they have modest effect in slowing the disease 
progression. The antiglutamate agent Riluzole, when given orally, was shown to 
slow the progression of ALS and improve survival in patients with disease of bul-
bar onset; it prolonged survival by about 3 months (27). The antioxidant 
Edaravone has been shown to slow the clinical progress of ALS in select patients 
in limited trials; but again, the benefit has been marginal (28).

In the absence of curative treatment, supportive and palliative measures are 
exceedingly important (29–33). Table 2 summarizes the range of symptomatic 
and palliative treatments in ALS. Regarding symptomatic treatment of spastic 
leg weakness, anti-spasticity medications, such as baclofen or tizanidine, or 
subarachnoid infusions of baclofen via an implanted lumbar pump can be 
helpful. Benzodiazepines may also be used to relieve limb and bulbar spasticity 
in some cases. These anti-spasticity approaches are most suitable for cases 
of PLS, which are expected to progress slowly over a long period. 
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The  pseudobulbar syndrome can be ameliorated with dextromethorphan- 
quinidine compounds.

At all stages of ALS, physical therapy is useful in maintaining mobility. Physical 
therapy is invaluable, for example, for avoiding contractures of the fingers and 
shoulders. Occupational therapy is likewise helpful, particularly assessments of 
the patient’s function in the home. A range of personalized orthotic devices, often 
guided by the physical and occupational therapists, may be of assistance to the 
patient as the disease progresses.

Important in the management of ALS is periodic monitoring of respiratory 
function and nutrition (33). Significant practical advances have been made in 
multidisciplinary ALS clinics with regard to respiratory and nutritional manage-
ment in ALS. As the respiratory muscle weakness compromises breathing, the use 
of bilevel positive airway pressure (BiPAP) allows patients to sleep better and 

TABLE 2 Symptomatic and palliative management of ALS

Symptoms Management

Spasticity • Baclofen
• Tizanidine
• Intrathecal baclofen pump
• Physical therapy

Weakness and physical disability • Orthotics (leg brace, neck brace)
• Mobility aids (cane, walker, wheelchair)
• Physical therapy

Dyspnea and poor cough • Ventilatory support
• Cough-assist device
• Suction machine
• Chest physical therapy
• Morphine or benzodiazepine

Dysphagia • Modified diet
• Gastrostomy tube

Dysarthria • Communication aids

Sialorrhea • Tricyclic antidepressants
• Glycopyrrolate bromide
• Botulinum toxin injection
• Salivary gland radiation
• Suction machine

Emotional lability • Tricyclic antidepressants
• Dextromethorphan hydrochloride/Quinidine sulfate

Depression and anxiety • Antidepressants
• Benzodiazepines

End of life care • Hospice services
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reduce daytime somnolence. With effective noninvasive respiratory support, tra-
cheostomy can be deferred for months or years in most cases. Ultimately, as the 
disease progresses further and diaphragm fails, BiPAP becomes necessary not only 
at night but also during the day. When BiPAP use approaches 20 to 24 h per day, 
patients and their families must address the difficult question of tracheostomy and 
mechanical ventilation or hospice care.

As oropharyngeal muscles become weak and dysphagia progresses, meals 
need to be modified to prevent choking, aspiration, and complications. In initial 
stages, fruits, vegetables and meat should be cut into small pieces and dry foods, 
such as toast should be avoided. Milk shakes and thicker consistency foods are 
ideal at this stage. Speech therapists at ALS clinics are helpful in teaching patients 
and their caregivers methods to adapt to declining bulbar function and minimiz-
ing aspiration. Eventually, most ALS patients will need a feeding tube to maintain 
normal hydration and caloric intake (33).

The American Academy of Neurology has published guidelines for manage-
ment that have been of aid to patients and physicians; they emphasize the com-
plex and multidisciplinary needs of ALS patients (34, 35)

CONCLUSION

ALS is a progressive neurodegenerative disease resulting eventually in respiratory 
failure and death in 2 to 4 years or longer in rare cases. Several clinical subtypes 
of ALS are recognized chiefly depending on the upper and lower motor neuron 
involvement, and some of these subtypes have better prognosis. The etiology of 
ALS is unknown, and there is currently no curative treatment of ALS. Supportive 
and palliative measures are exceedingly important to maintain and improve the 
quality of life in patients with ALS.
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Abstract: At present, disease-modifying treatments for Amyotrophic Lateral 
Sclerosis (ALS) remain limited, with early intervention crucial for maximum 
potential benefit. A majority of patients will develop dysphagia during the course 
of their disease, and most will die within three years of the first symptom onset 
due to respiratory complications. Therefore, early diagnosis is vital to ensure the 
patient receives appropriate multidisciplinary care and resultant improved 
 longevity as well as quality of life. However, a recent literature review found that 
ALS patients experience a diagnostic delay of 10–16 months from symptom onset. 
This chapter examines the factors that contribute to diagnostic delay and potential 
interventions to decrease time to diagnosis. 
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INTRODUCTION

Currently, for patients diagnosed with amyotrophic lateral sclerosis (ALS), dis-
ease modifying treatments remain limited. The typical disease course is marked 
by a subtle onset and insidious progression, with patients experiencing variable 
degrees of weakness, spasticity, and muscle atrophy, ultimately resulting in 
 progressive deterioration of limb use, ambulation, speech, swallowing, and 
breathing. A majority of ALS patients will develop dysphagia during the course 
of the disease as a result of disease progression involving the bulbar musculature 
and most will die within three years of the first symptom onset due to respira-
tory complications (1). This makes early diagnosis and subsequent referral to an 
appropriate tertiary neuromuscular center/ALS clinic crucial to assure the patient 
receives appropriate multidisciplinary care and the resultant improved longevity 
and quality of life. It therefore becomes critical to understand where along the 
disease timeline diagnostic delays occur and what factors contribute to its 
prolongation. 

DIAGNOSTIC DELAY IN NON-NEUROLOGICAL 
AMBULATORY MEDICINE 

Broadly speaking, diagnostic delay impacts medicine across the spectrum of 
diseases and subspecialties. In a 2014 study of celiac patients, diagnostic delay 
of greater than 10 years was reported in 32% of patients surveyed (2). In a 
2012 study of missed or delayed diagnoses of breast and colon cancer, which 
have the potential for positive outcomes if caught early, Poon et al. found that 
95% of diagnostic delay involved physician ‘cognitive error’, which was 
defined as errors arising from inadequate clinical knowledge or poor clinical 
judgment. Forty-six percent of these cognitive errors involved an inappropri-
ate workup strategy and 53% were related to misinterpretation of results. In 
66% of cases reviewed, researchers found that appropriate application of man-
agement guidelines for breast and colon cancer could have prevented further 
delay (3). 

Another meta-analysis of misdiagnosis in various cancer subtypes found a 
majority of breast cancer diagnostic delay was related to similar cognitive errors of 
mammogram radiology reviews, where general radiologists lacked specialized 
training to appropriately assess mammogram studies. Melanoma diagnoses were 
similarly delayed or altogether missed secondary to a lack of physician experience 
with or clinical knowledge of the disease (4).

In a 2006 study regarding medical malpractice cases, the most common causes 
of missed or delayed diagnosis, in descending order, was a failure to order appro-
priate diagnostic testing, inadequate follow-up plans, failure to collect an accurate 
history and physical exam, and finally incorrect interpretation of diagnostic test-
ing (5), suggesting limited medical knowledge to be a significant factor in delayed 
diagnosis. Such delays ultimately result in inappropriate utilizations of resources, 
patient harm, and potential damage to the physician-patient relationship. 
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Overall, across a broad spectrum of medical subspecialties, there arise clear 
similarities in factors that result in diagnostic delay, and the field of ALS is 
unfortunately no exception. However, there may be more in common when 
the comparison is between ALS and degenerative conditions with similarly 
guarded prognosis. 

DIAGNOSTIC DELAY IN CHRONIC NEURODEGENERATIVE 
DISEASE 

Similar factors of diagnostic delay are readily found in essentially all subspecialties 
of neurology, but here we will limit our discussion to dementia, which encom-
passes a wide variety of chronic neurodegenerative diseases and remains a field 
where early diagnosis and subsequent medical and social intervention remains 
paramount for appropriate management. In a 2012 meta-analysis by Aminzadeh 
et al., only about 50% of cases of mild to moderate dementia were ever correctly 
diagnosed, with first notable diagnostic delay occurring between symptom onset 
and initial physician consultation; family members would frequently wait one to 
two years before seeking any medical assessment. Furthermore, additional delays 
were caused by subsequent referrals to specialists, as the initial consulted physi-
cian was unlikely to be the provider to make the ultimate diagnosis (6). 

Research has also noted that a significant barrier to early diagnosis is the lim-
ited clinical encounter time often seen with primary care visits, hampering the 
ability to perform detailed-enough exams, determine appropriate tests, or proce-
dures to detect dementia (6–8). Moreover, even when dementia was suspected, 
primary care physicians/providers (PCPs) have expressed hesitation about provid-
ing the correct diagnosis; they assumed patients and/or their relatives would not 
want to know, and they even questioned what effect the diagnosis would have on 
the PCP-patient dynamic (7). 

In addition to limited time available for appropriate assessment and workup, 
Aminzadeh et al. reported other causes for diagnostic delay including limited 
medical knowledge regarding the disease course, deficits in communication and 
management skills, and a problematic attitude they termed “therapeutic nihilism” 
(6). This mindset encapsulates an overall negative view or stigma held by physi-
cians towards dementia and has appeared elsewhere in the literature. In prior 
studies, physicians have expressed concerns that a diagnosis of dementia would 
do more harm than good. There was a general perception that there are no avail-
able or effective treatments to slow the progression of disease and therefore such 
a work up would not be worthwhile (7, 8). Similarly, patients’ relatives/caregivers 
reported one of the most common causes of delayed diagnosis related to physician 
attitudes. In one study, 33% of relatives/caregivers reported that the initial assess-
ing physician did not consider anything to be abnormal with the patient and in 
another 7% of cases, physicians told relatives/caregivers that pursuing a diagnosis 
would not be worthwhile (9).

Overall, one can already begin to anticipate similar factors that affect time to 
dementia diagnosis such as limited physician knowledge or disease stigma being 
similarly applicable to ALS. 
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LENGTH OF DIAGNOSTIC DELAY IN ALS 

A recently published article that reviewed twenty-one retrospective studies of time 
from symptom onset to correct diagnosis in the ALS patient population between 
1990 and 2020 found that ALS patients experience a delay of about 10–16 months 
from symptom onset to diagnosis (Figure 1) (10). 

This has been confirmed in other research as well (11–14), including more 
recent studies in 2020 that found a median delay of about 12 months (15–17) and 
a mean delay of 17 months (15). In the Richards et al. article, the longest delay 
was 27 months, reported in a study reviewing the United States Centers for 
Medicare & Medicaid Services database (18) and shortest reported median inter-
val was from a study of a national database used by tertiary ALS clinics in France, 
reporting a delay of 9.1 months (19). 

PATIENT-SPECIFIC FACTORS LEADING TO DIAGNOSTIC DELAY 

Much like dementia, the first delay occurs between symptom onset and patients 
seeking medical attention. Generally, ALS patients will wait anywhere from three 
(20) to almost six months (21–25) after symptom onset before undergoing a med-
ical evaluation, but other patient-specific factors contribute to the diagnostic 
timeline (Table 1).

Disease phenotype and diagnostic delay

Clinical presentation plays a significant role in time to diagnosis, particularly with 
regards to bulbar versus spinal-onset presentation (8, 13, 15, 16, 18, 19, 21, 22, 
25–31), with the literature suggesting patients with bulbar-onset ALS experience 
a delay to diagnosis three to seven months shorter than those with spinal-onset 
ALS (21, 26–28). The study reporting the longest delay of 2.25 years, as 

Figure 1. Pathway to ALS diagnosis from first symptom onset to final diagnosis as reported in 
Richards et al. The initial delay to be evaluatied by the first provider averages 3-6 months. 
About 60% of patients are then referred to neurologists while the remaining 40% are 
referred to non-neurologists. Of note, in some studies presenting to a neurologist compared 
to a non-neurologist does not seem to increase diagnostic delay when the neurologist is the 
first consultant [Ref 23] or even the third consultant (Ref 21).
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mentioned in the review paper by Richards et al. (10), showed a substantial dif-
ference between delays in the bulbar-onset group (1.25 years) compared to the 
spine-onset group (2.5 years) (18). Of note, for patients presenting with both 
bulbar and spine symptoms, the median time to diagnosis dropped to 0.25 years 
(10, 18). Patients with spinal-onset presentation also receive more differential 
diagnoses than those with bulbar presentation (26) and are more likely to be mis-
diagnosed (27). Compared to spine-onset patients, bulbar-onset patients are also 
more likely be assessed by a neurologist and less likely by a PCP or orthopedist 
(28). Multiple studies have also noted shorter diagnostic delay to be associated 
with shorter survival time (11, 12, 17, 32–36), likely in part driven by the patients 
with a more rapidly progressive disease who may seek medical attention sooner 
than those with a more insidious course (12, 32) and bulbar patients who gener-
ally experience a more rapid course than their spinal-onset counterparts.

One study by Scialo et al. divided their patient population into two subtypes: 
those with a diagnostic delay of less than or greater than 36 months. They found 
that the cohort with a diagnostic delay of greater than 36 months were more likely 
to present with an atypical clinical phenotype. In another study, patients who 
presented with clinically-evident fasciculations also experience a shorter delay to 
diagnosis, though not as short as the bulbar-onset population (23).

Age of onset and diagnostic delay

Multiple studies have also noted age as a factor that prolongs diagnostic delay 
(22, 24, 26, 37). In one study, patients 65 to 74 years old experienced longer 
times to diagnosis compared to those 55 to 64 years old, at 12 months and 
8 months, respectively (26). Similarly, another study found that the median time 
to diagnosis was 12.4 months for patients over the age of 60 years compared to 
8 months for younger patients. Furthermore, this study showed that diagnostic 
delay greater than 12 months was about 11 times more likely for patients in the 
>60 years age group (38). Patients over the age of 60 were also more likely to be 
initially misdiagnosed compared to younger populations (24). This age-related 
delay was not consistently found, with Nzwalo et al. reporting significant delay 
among the younger patient population, which they defined as less than 45 years 
of age (37). In one Italian multicenter study, older patients were noted to have a 
shorter diagnostic delay, which authors argued was likely due to more rapid 

TABLE 1 Patient and Physician/Provider factors found to 
affect time to diagnosis in ALS (10)

Patient Factors Physician/Provider Factors

Age “Cognitive Errors”/Misdiagnosis 

Gender Inappropriate testing/lack of testing

Comorbidities Initial referral to neurologist vs non-neurologist

Phenotype (region of onset, presence 
of visible fasciculations)

Inappropriate surgery
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disease progression as they are also more likely to present with a bulbar pheno-
type than younger populations (34), as similarly noted by Yates et al. (12). 
Interestingly, a study by Martinez-Molina et al. found no association with age and 
length of delay (16).

Gender and diagnostic delay

There is also some evidence of gender differences in time to diagnosis, with male 
patients experiencing longer delays than females (37, 38) though this could be 
related to the female predominance of bulbar-onset ALS (38). In one study, men 
were also more likely to receive a misdiagnosis compared to women by a ratio of 
2.5 to 1 (25) , though again this may be because bulbar-onset ALS has a higher 
female predominance. Interestingly, a study by Iwasaki et al. noted that diagnostic 
delay in male bulbar-onset patients was 10.5 months compared to 9.8 months in 
female bulbar-onset patients. In contrast, male spine-onset patients experienced a 
delay of 13.7 months versus 14.8 months for female spine-onset ALS patients. 
Martinez-Molina et al. again found no significant association with gender and 
length of delay (16).

Patient comorbidities and diagnostic delay 

Another factor affecting time to diagnosis is the presence of other neurological 
comorbidities, particularly those diseases with symptoms similar to those of ALS 
(16, 18, 23), or an overall complex medical history (39). In one study, the pres-
ence of comorbidities was associated with nearly twice the length of delay com-
pared to patients without comorbidities, at 19.7 months and 11.1 months 
respectively (38). Delays have also been reported with patients presenting with 
frontotemporal dementia (FTD) as the predominant feature of their ALS-FTD, 
such as two patients in the Househam and Swash study who initially presented 
with dementia and ultimately experienced a 31.5 month delay from time of first 
physician assessment to diagnosis of ALS (25). 

PHYSICIAN/PROVIDER-SPECIFIC FACTORS LEADING TO 
DIAGNOSTIC DELAY

As stated before, the first delay in the diagnostic timeline is the period between 
from disease onset to the patient seeking medical attention, a step that could be 
argued is generally independent of physicians and providers. However, once the 
patient is first assessed by a healthcare professional, there arise further physician 
dependent factors that prolong the time to diagnosis (Table 1).

“Cognitive errors”, misdiagnosis, and diagnostic delay

Indeed, it becomes evident in the discussion above regarding patient specific 
factors that a great deal of this diagnostic delay is likely compounded by, if not 
a result of, physician ‘cognitive error’, which was above defined in 
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non-neurological ambulatory medicine literature as errors stemming from pro-
viders’ inadequate clinical knowledge or poor clinical judgment, such as inap-
propriate workup strategy or misinterpretation of results (3). There seems to 
be an apparent lack of clinical knowledge among physicians regarding spinal-
onset ALS, leading to diagnostic delay. This compares to the bulbar-onset 
patients, or patients presenting with fasciculations, which perhaps raise red 
flags more broadly known among physicians as ALS symptoms. Two thirds of 
PCPs self-report that their degree of training regarding ALS is low, with many 
expressing an overall lack of knowledge of disease clinical signs and symptoms 
(40). While neurologists are certainly more likely to be exposed to ALS during 
the course of their clinical experience, they too are at risk of making cognitive 
errors. In one study, Li et al. asked neurologists in multiple countries to rank 
the diagnostic importance of MND clinical features and then diagnose known 
MND case summaries. While in agreement on major MND characteristics, 
neurologists differed significantly with regard to their final diagnoses of the 
case summaries. Seemingly, the neurologists may have agreed in “theoretical 
terms”, but applied this diagnostic knowledge in fundamentally divergent 
ways based on personal clinical experience (41). Misdiagnosis was the another 
factor that resulted in further delay, with incorrect diagnoses occurring in 
13–68.4% of cases (13, 20–22, 24, 25, 37, 42). Such incorrect diagnoses 
included cerebrovascular disease, cervical myelopathy, neuropathy, radiculop-
athy, vertebral disc herniation, and myasthenia gravis, among many others 
(Table 2) (20–22, 25, 38, 42). A pertinent question that then arises is just who 
is making these misdiagnoses? Surprisingly, anywhere from 7–44.4% of misdi-
agnoses were made by neurologists (13, 20, 25, 42) with one study finding 
motor neuron disease (MND) was listed as an initial differential diagnosis in 
only 30.6% of ALS patients’ medical records (38). According to one study, if 
neurologists are the first providers to assess the patient, only 56% correctly 
diagnosed ALS; interestingly, this increased to 78% if they were the second 
provider. However, it should be noted that this rather starkly contrasts with 
the 1% of patients correctly diagnosed by a primary care provider or other 
specialist during initial presentation (37). Misdiagnoses leads to more signifi-
cant delay than those without any diagnosis at all (13, 20, 21, 24, 42), with 
patients often only receiving the correct the diagnosis once their disease has 
further progressed (42). 

Specialist referrals and diagnostic delay 

While the first provider assessment is most frequently with the patient’s PCP (13, 
15, 21, 23, 37), subsequent referrals to other specialists results in additional 
delays, with some research showing that neurologists make up 60% of initial spe-
cialist referrals (23, 38). Nzwalo et al. reported that 56% of cases will undergo 
subsequent neurology referral at some point during the course of the disease (37). 
This was supported by another study that found that while neurologists made up 
only 28% of the first specialist referral, 62% of patients received a neurology con-
sult at some point within the first three referrals (21). In another study, 49% of 
ALS patients were referred to other specialists prior to a neurologist, with 54% of 
this group having been seen by otorhinolaryngologists (30). Other non-neurology 
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TABLE 2 Rates of specific misdiagnoses prior to formal 
diagnosis of ALS (10)

Study (Reference)
Overall misdiagnosis 
rate (%) Specific misdiagnosis subcategory rate (%)

Palese et al. (38) 49/134 (36.6%) Myelopathy (14.3%), Radiculopathy (8.2%), Stroke/
Vascular encephalopathy (8.2%), Neuropathy 
unspecified (8.2%), Nothing pathologic (6.1%), 
Arthrosis (6.1%), Myasthenia gravis (6.1%), 
Carpal tunnel syndrome (4.1%), Herniated 
disc (4.1%), Upper airway infection (4.1%), 
Musculoskeletal (4.1%), Other (26.5%)

Galvin et al. (21) 20/155 (13%) Structural (65%): Cerebrovascular disease, Hiatus 
hernia with reflux, Cervical myeloradiculopathy, 
and Lumbar radiculopathy.

Paganoni et al. (22) 158/304 (52%) Neuropathy (28%), Spine Disease (18%), Vascular 
(11%), Neurodegenerative Disease (11%), NMJ 
disorder (9%), ENT disorder (7%), Muscle 
Disease (6%), other (10%).

Belsh and 
Schiffman (42) 

14/33 (42.4%) Radiculopathy (12.1%), brachial plexus neuropathy 
(9%), Multiple Sclerosis (3%), Myelopathy (3%), 
Polyneuropathy (3%), Stroke (3%), Depression 
(6%), Occult carcinoma (6%), Pulmonary 
emphysema (6%), Congestive heart failure (3%), 
Drug induced dysarthria (3%). 

Chiò (23) 90/201 (45%) Discal herniation/medullar compression (12%), 
Arthrosis/periarthritis (9%), Narrow medullar 
canal (4%), Cerebrovascular accident (3%), 
Osteoporosis (2%), Laryngitis/chronic tonsillitis 
(2%), Thyroid dysfunction (1%), Parkinson’s 
disease (1%), Multiple sclerosis (1%), 
Other (10%).

Cellura et al. (20) 81/260 (31.1%) Herniated disc/Cervical myelopathy (32.0%), 
Vascular pseudobulbar palsy (20.0%), 
Neuropathy/ Myopathy (8.6%), Myasthenia 
gravis (7.4%), Carpal tunnel syndrome (6.2%), 
Depression (6.2%), Alzheimer’s dementia (5%), 
Parkinson disease (5.0%), Arthrosis (2.4%), 
Thyroid dysfunction (2.4%), Multiple sclerosis 
(2.4%), Stroke (1.2%), Essential tremor (1.2%).

 Househam and 
Swash (25)

39/57 (68.4%) Vocal cord dystonia, Depression, Laryngeal 
cancer, Stroke (8.6%), Stress, Thyroid disease, 
Muscular dystrophy, Frozen shoulder (5.7%), 
asthma (5.7%), Cervical Spondylosis, Arthritis 
(14.3%), Cramps, Heart disease, Trapped nerve 
(8.6%), Recurrent throat infection, Ear infection, 
Medication side effect, Ligamentous strain, 
Cervical disc prolapse, Peripheral neuropathy. 
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specialist referrals included orthopedists, rheumatologists, and neurosurgeons 
(23, 38), as well as physiotherapy and psychiatry (25). 

There are also further differences in length of delay secondary to specialist 
referral dependent on the type of subspecialist. Palese et al. reported a longer 
diagnosis delay for patients assessed by a non-neurologists (13 months) compared 
to those seen by a neurologist (10 months) (38). Nzwalo et al. also reported sig-
nificantly reduced diagnostic delays for patients who underwent a neurology 
referral (37). In a study by Househam and Swash, ALS patients who were first 
referred to a neurologist experienced a shorter delay (10.2 months) compared to 
those referred to another subspecialty (12.3 months) (25). This was echoed in a 
later study that found prolonged times to diagnosis among patients referred to 
non-neurologists (39). Interestingly, spinal-onset patients referred to an orthope-
dist experienced an additional delay of 10 months compared to those referred to 
a neurologist (28). Those with bulbar onset experienced a delay to diagnosis of 
4.9 months if the referral was to a neurologist, compared to 12.2 months for other 
specialists (collectively). Diagnostic delay was even more prolonged for patients 
referred to ENT in particular, at 24.7 months (13). 

Differences in delay among subspecialties was not a unanimous finding. Turner 
et al. reported that a subspecialty referral, specifically to otorhinolaryngologists, 
did not subsequently result in significant diagnostic delay (30). One study found 
lower costs associated with neurology referrals but not a significant difference in 
time to diagnosis (21). In another study, there was no significant difference in 
diagnostic delay if a neurologist was the first or second physician seen, but this 
increased when they were seen as the third, fourth, or fifth provider, with time to 
diagnosis of 17, 19, and 21 months respectively (23). Matharan et al. noted a 
diagnostic delay roughly ten months longer for those seen by a neurologist versus 
non-neurologist. Interestingly, they also noted that there was no significant differ-
ence in delay depending on whether the patient was referred to a neurologist or 
sent home without further workup. Authors theorized, at least for the former, this 
could be due to patients early in the disease course needing serial EMGs or clinical 
examinations before the disease was advanced enough to be more definitively 
diagnosed. They also note that bulbar-onset ALS, which showed a shorter diag-
nostic delay, was more likely to be referred to ENT rather than a neurologist, 
potentially skewing the specialist referral data (15).

Inappropriate/incomplete testing and diagnostic delay

As stated earlier, those with spinal-onset presented received more differential 
diagnoses than those with bulbar-onset presentation (26) and are more likely to 
be misdiagnosed (27). Therefore, it is not surprising that those in the spine-onset 
subgroup were also more likely to undergo further diagnostic testing, including 
electrodiagnostic testing (EDX) comprising nerve conduction study (NCS) and 
electromyography (EMG), as well as neuroimaging such as MRI and CT scans (18). 
While EDX is certainly an appropriate step in working up MND (as will be further 
discussed below), neuroimaging which also has a role in ALS investigations may 
result in incidental findings that potentially introduce confounders and may add 
unnecessary procedures, thereby prolonging the diagnostic timeline. 
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Role of electrodiagnosis and neuroimaging in diagnostic delay

While original El Escorial criteria did not allow for EMG findings to serve as a 
surrogate for clinical features of LMN degeneration, subsequent diagnostic crite-
ria revisions have improved upon this. The 2006 Awaji-Shima criteria now per-
mits fasciculation potentials (without need for positive sharp waves or fibrillation 
potentials) in the presence of chronic motor axon loss changes as adequate evi-
dence of lower motor neuron degeneration, allowing for earlier diagnosis and 
classification. Furthermore, these Awaji-Shima criteria exhibit increased sensitiv-
ity (43) and equal specificity of an ALS diagnosis when compared to the revised 
El Escorial criteria (44). In a study by Palese et al., EDX was the most common 
first investigatory procedure in the pathway to the ALS diagnosis, followed by 
brain and spinal cord imaging (38). Research suggests that ultimately 75–100% 
of ALS (15, 21, 30) patients will undergo neurophysiologic/EDX testing at some 
point during their diagnostic path and 61–100% of patients will undergo brain 
MRI (21, 30).

Of course, the use of EDX testing does not guarantee a correct diagnosis. 
Evidence suggests EDX diagnostic sensitivities are lowest in patients catego-
rized as possible ALS and intermediate in patients with probable and probable 
with laboratory support ALS; the highest sensitivities were found in those 
with definite ALS (43). In addition, other neuromuscular diseases such as 
multifocal motor neuropathy or Lambert-Eaton myasthenic syndrome may 
require a neurologist with a higher degree of expertise in EDX to collect and 
interpret the data in order to distinguish diseases such as these from ALS. 
Physicians should always be mindful of any alternative diagnoses to explain 
patients’ presenting symptoms and exam features. Furthermore, results are 
not absolute and the lack of definite evidence for MND during one investiga-
tory work up does not necessarily predict that future investigations will be 
similar. 

Surgical intervention and diagnostic delay 

Misdiagnosis as well as unnecessary or incomplete workups can unfortunately 
result in exposure to unnecessary procedures. Patients who are misdiagnosed 
more likely to undergo surgeries as a result with about 12–13% of ALS patients 
undergoing an inappropriate surgical procedure prior to their correct diagnosis 
(27, 45). This not only results in increased potential risk but also further delay 
(27, 37, 38). In one study for example, the 12% of patients who underwent sur-
gery prior to receiving an ALS diagnosis experienced an additional delay of 
roughly six months compared to the 43% who underwent medical management 
(27), thereby further compounding upon the misdiagnosis delay mentioned 
above. Of note, in one study of ALS patients who underwent inappropriate sur-
gery prior to diagnosis, 32% had a pre-operative EMG and of these patients, 72% 
of reports documented evidence of polyradiculopathy without any mention of the 
possibility of MND (45), suggesting that timely EDX testing does not always guar-
antee reduction in delay. 



Diagnostic Delay in ALS 25

ADVANTAGES OF DECREASING TIME TO DIAGNOSIS IN ALS 

In addition to the numerous unnecessary, costly, and even painful procedures and 
investigations that arise from delayed or incorrect diagnosis, the results from this 
work up can be misinterpreted, leading to further prolongation of time to correct 
diagnosis. Overall, this unnecessary work up and often resultant surgical inter-
ventions may also result in delayed referrals to appropriate neuromuscular spe-
cialists and multidisciplinary clinics. In these clinics, patients are provided with 
the appropriate pharmacological and other supportive interventions, such as 
therapy (physical, occupational, speech and swallowing). Apart from disease-
modifying treatments, management involves symptomatic treatment that is spe-
cifically tailored to needs of ALS patients. Furthermore, these ALS centers allow 
for broader access to subspecialty evaluations and management in a single visit, 
thereby minimizing decentralized and often multiday appointments (46). 
Importantly, diagnosis and care of patients with ALS in such tertiary centers has 
been shown to decrease the frequency of hospital admissions, improve quality of 
life, and increase survival outcomes (47, 48). A more recent study in 2020 found 
that patients referred to ALS centers also experienced a significantly shorter diag-
nostic delay of 8.5 months compared to 12 months for those assessed at other 
facilities (16). 

Delays to diagnosis may also affect enrollment into clinical trials and reducing 
the delay would allow for earlier initiation of disease-modifying treatment candi-
date agents and extended outcome monitoring periods. These clinical trials typi-
cally exclude patients further along in the disease course, as well as those with 
higher disease burden through the use of strict criteria such as conservative respi-
ratory vital capacity cut-offs or limited timelines from symptom onset. One study 
assessing rates of exclusion in ALS clinic trials between 2000 and 2017 found that 
an average of 59.8% of patients are excluded. Respiratory function and disease 
duration were the second and third most common cited exclusion factors, respec-
tively, with failure to meet a specific El Escorial category as the most common 
cause for exclusion (49).

Finally, earlier diagnosis and management of ALS can allow patients to 
more appropriately plan their futures regarding numerous aspects of their 
lives including financial, social, psychological, and spiritual. Patients will 
have more time to consider their own goals of medical care and make plans 
for their inevitable disability. Ultimately, an earlier diagnosis allows for more 
time to determine a meaningful and dignified end of life. Patients would have 
additional time to consider and document their own wishes with regard to 
artificial ventilation, feeding tube placement, and similar terminal care deci-
sions. Furthermore, one cannot minimize the immense psychological toll that 
arises when a patient initially receives the incorrect diagnosis of a treatable or 
reversible disorder, only to be subsequently informed that their condition is 
actually a progressive and ultimately terminal disease. Such humanistic con-
siderations should not be forgotten when formulating potential interventions 
to curb diagnostic delay. 
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POTENTIAL DISADVANTAGES OF DECREASING TIME TO 
DIAGNOSIS IN ALS

Disadvantages to limiting diagnostic delay are largely theoretical but worth dis-
cussing, as the diagnosis of ALS remains mostly a clinical one and must be made 
after the exclusion of alternative and potentially treatable diseases. A 1999 article 
by Swash proposed a stepwise algorithm (Figure 2) for evaluating weakness and 
wasting as presenting clinical features, with the aim of minimizing diagnostic 
delay in ALS, while excluding mimicker conditions (50). He outlined two path-
ways, noting considerable overlap. The pathway comprising diagnosis by positive 

Figure 2. A proposed neurological weakness and wasting workup algorithm, modified with 
permission from Swash (50). 
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criteria is limited by the absence of a specific biologic diagnostic test. However, the 
other pathway comprising diagnosis by exclusion of other disorders may promote 
delay “that can be tempered only by efficiency in the investigative pathway”. 

One such potentially treatable condition that may present similarly as a pro-
gressive weakness is polyradiculopathy. If imaging is suggestive of such an etiol-
ogy, surgery may be well-indicated. Therefore, shortening diagnostic delay may 
have the unintentional secondary effect of abating the extent of an appropriate 
work up for mimics and this may then result in failure to exclude other treatable 
conditions. Furthermore, it is possible for a patient to have both ALS and addi-
tional treatable and more commonly diagnosed neurological comorbidities such 
as peripheral neuropathy or carpal tunnel syndrome. Properly identifying and 
managing these conditions through thorough and appropriate investigations 
could result in improved quality of life, even if the patient is still ultimately diag-
nosed with ALS. 

From a more humanistic perspective, a more extensive workup may ease some 
degree of psychological impact of receiving the news of a terminal diagnosis, par-
ticularly if the certainty of diagnosis is arrived at in a careful, stepwise fashion. 
This may better satisfy concerns on the part of both the physician and the patient, 
reassuring each party that no avenue of investigation has been left unaddressed. 

IMPLEMENTED MEASURES FOR MINIMIZING DIAGNOSTIC 
DELAY IN ALS

In the United Kingdom (UK), a goal of the National Health Service (NHS) is to 
diagnose and initiate treatment of MND within 18 weeks of first referral from 
primary care providers. In January 2005, the Royal Preston Hospital in the UK 
introduced a ‘fast-track’ program for people suspected of having MND, with the 
ultimate goal to decrease wait times and allow for the final diagnosis to be given 
in an appropriate tertiary neurological/neuromuscular clinic-based environment. 
In a review of this program, the NHS goal was met in 91.9% of ‘fast-track’ patients 
compared to 57.1% of non-fast-track patients. Furthermore, the mean duration 
from referral to diagnosis was less than half as long for patients with the fast-track 
service compared to non-fast-track patients, 50 days compared to 104 days 
respectively. Interestingly, there was no definite improvement in mean time from 
initial symptom onset to diagnosis among ALS patients (collectively) after initiat-
ing the fast-track program, attributable to an insufficient number of patients 
through the fast-track pathway to impact the mean time to diagnosis in this spe-
cific ALS population (39). 

PROSPECTIVE OPPORTUNITIES TO MINIMIZE DIAGNOSTIC 
DELAY IN ALS 

Much of this chapter has discussed the role of primary care practice and its impact 
on length of time to the diagnosis of ALS. In an era of increasingly subspecialized 
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medicine, PCPs are increasingly the “gatekeepers” of medicine (51). Unfortunately, 
a majority of PCPs will see, at most, only one or two ALS cases throughout their 
entire careers (52). Moreover, most general neurologists will only see a few cases 
of ALS per year (52) and their knowledge of classic ALS presentations may not be 
sufficient enough to make the correct diagnosis particularly in cases with more 
subtle disease onset, or complex presentations. 

Intervention strategies similar to those used to improve dementia diagnoses 
(53), such as practice-based workshops and decision support software, could 
be applied to improve ALS detection rates at the gatekeeper level, and beyond. 
Similarly helpful may be diagnostic guidelines and algorithms embedded into 
electronic medical record software that could alert the user to ALS “red flag” 
symptoms, and prompt appropriate next steps. To this end, a recently pub-
lished paper by Matharan et al. proposed an algorithm which may provide 
guidance regarding when to suspect ALS based on clinical signs and symptoms 
(Figure 3) (15). 

However, ALS-specific provider education directed towards primary care phy-
sicians and general neurologists cannot be understated as a key method of inter-
vention to minimize diagnostic errors. As noted in a 1999 paper by Eisen, a 
potential ALS surrogate marker is only effective if physicians are aware enough 
about the disease to consider ALS as a differential in the first place (52). Such 
education must focus on improving recognition of these “red flag” clinical features 
and correct interpretation of test results. One study found that 70% of patients 
who presented with a “red flag” symptom such as painless weakness, dysphagia, 
and gait disturbances did not have ALS as a differential diagnosis in their medical 
records (21). PCPs may seek a neurology consultation sooner, rather than manage 
a workup on their own. Furthermore, increased practitioner awareness regarding 
regional multidisciplinary centers would subsequently promote early referral as 
well. In addition, there should be education regarding available treatment options, 
both in terms of disease-modifying therapies and symptom-based management, 
as well as current clinical trials and those on the horizon, thereby limiting the 
potential component of “therapeutic nihilism” as noted in dementia literature (6). 

AND AND

AND

OR

Symptoms/signs ALS suspicion

Progressive
speech/swallowing

difficulties

Progressive
speech/swallowing

difficulties

Progressive
speech/swallowing

difficulties

Focal atrophic
muscle deficit

Focal atrophic
muscle deficit

Focal atrophic
muscle deficit

Brisk
reflexes

Fasciculation
cramps

weight loss

Fasciculation
cramps

weight loss

Fasciculation
cramps

weight loss

Figure 3. Proposed decision-making algorithm by Matharan et al. with the assistance of 
Graphandart.com to better screen for ALS based on clinical signs and symptoms (15).
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Education directed at the general public is also key. To raise the public aware-
ness of ALS, one article proposed changing general terminology about the disease 
to more accessible phrasing for the average layperson, in much the same way 
strokes have in a sense been rebranded to “brain attack” and myocardial infarc-
tions to “heart attacks”. They also recommended increasing the number of ALS 
centers so as to be more accessible. However, they acknowledge that given the 
essential rarity of MNDs, such multidisciplinary centers are typically not cost-
effective by conventional standards. Therefore the article proposed creating 
broader-reaching neurodegenerative centers, where ALS patients may be treated 
alongside those with dementia, Parkinson’s disease, or other progressive neuro-
logical conditions (52). Better public/patient understanding about common ALS 
symptoms may prompt the pursuit of medical evaluation sooner (public educa-
tion in this regard will have to be necessarily tactful, so as to not promote too low 
of a threshold for concern). The public should be similarly educated on the avail-
ability of disease-modifying treatments and the necessity of intervening early in 
the disease process. 

Ultimately, it is vital to determine where future improvements can be made 
along the ALS diagnostic timeline, including beyond the contribution of PCPs. Of 
course, many subsequent referrals are made to otorhinolaryngologists, orthope-
dists, rheumatologists, and neurosurgeons, among others, and future investiga-
tions and interventions pertinent to improving diagnostic delay would be remiss 
to not include these specialists as well. 

CONCLUSION 

Diagnostic delay impacts medicine across the spectrum of diseases and subspe-
cialties, but even more so with a progressive neurodegenerative disease such as 
ALS. Current barriers to minimizing time to diagnosis include referrals to multi-
ple specialists, misdiagnoses, and resultant unnecessary workups and procedures/
surgeries. These delays are particularly notable in patients with spine-onset ALS, 
for whom the differential diagnoses are typically broad. 

There is marked potential to reduce these diagnostic delays through improved 
awareness and clinical education about ALS directed at primary care providers, as 
well as several other physician/provider types who evaluate these patients before 
definitive diagnosis is made. There is also a role for tailored education directed at 
the general public.

The recent literature review (10) found that the typical delay to diagnosis for 
ALS patients is 10–16 months reviewed studies from 1990 to 2020, which sug-
gests the establishment of clinical diagnostic criteria and growing public aware-
ness of ALS may not have been sufficient to significantly shorten delay (20). While 
this chapter has addressed the “what” and the “where” with regard to ALS diag-
nostic delay, there remains the question of why? Is there a reluctance by both PCPs 
and general neurologists to seek out second opinions from neuromuscular spe-
cialists and/or tertiary ALS multidisciplinary clinics? As mentioned previously, the 
dementia literature aptly notes a certain degree of “therapeutic nihilism” with 
regard to making the correct diagnosis. Could that also be a significant factor as it 
pertains to ALS? Perhaps physicians/providers experience some degree of 
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apprehension in giving patients a terminal diagnosis when other avenues of addi-
tional investigation remain open, even if not fully warranted.

There remains an opportunity for broader awareness in the medical field about 
the role of neuromuscular specialists and tertiary centers in diagnosing and man-
aging ALS. This may lessen the pursuit of unnecessary testing, procedures, and 
referrals, as may strategically educating the public on common signs and symp-
toms of the disease. Such education may ultimately result in more expedient refer-
rals to ALS multidisciplinary clinics, followed by overall improvements to quality 
of life and longevity. Importantly, further dedicated research is needed at the 
patient and various provider levels regarding reducing the time to ALS diagnosis 
and hastening referrals to appropriate ALS specialists and multidisciplinary 
centers. 
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Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative 
disorder, characterized by the degeneration of upper and lower motor neurons of 
the motor cortex, brainstem, and ventral horn of the spinal cord. The role of glial 
cells in the onset and progression of ALS is increasingly being recognized. 
Dysfunctional astrocytes, with an atypical and neurotoxic phenotype, in the cere-
bral cortex and the spinal cord promote neuroinflammation and motor neuron 
degeneration. Indeed, cortical and spinal cord astrocytes from SOD1G93A 
(mSOD1) mice are neurotoxic, develop early deficits, and lose their neuro- 
supportive properties before disease onset. This chapter discusses the contribu-
tion of dysfunctional cortical and spinal cord astrocytes in the development and 
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progression of ALS. Differences in astrocyte heterogeneity and reactivity, calcium 
signaling, neurotransmitters, and in paracrine signaling mechanisms along with 
implications for novel therapies in ALS are addressed.

Keywords: amyotrophic lateral sclerosis; astrocyte subpopulations; glutamate and 
homeostatic imbalance; reactive biomarkers; revival of dysfunctional astrocytes

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegen-
erative disorder, characterized by the degeneration of upper and lower motor 
neurons (MNs) across the corticospinal tract, from the motor cortex to the brain-
stem, and ventral horn of the spinal cord (SC) (1). The disease progression is 
aggressive, with a fatal outcome usually within five years of onset. Currently, there 
is no cure and very few treatments are available for this devastating MN disease. 
While most cases of ALS are sporadic (sALS) (90–95%), a small subset (5–10%) 
of patients have a positive familial history (fALS) (2). Mutations in the gene encod-
ing for the Cu2+/Zn2+ ion-binding superoxide dismutase (SOD1) protein are the 
most common and represent approximately 20% of fALS cases. SOD1G93A 
mouse (mSOD1) is currently the most widely used animal model to study ALS. 
Other mutations associated to ALS are TARDBP (also known as TDP-43; encodes 
for TAR DNA-binding protein),  FUS  (encodes RNA-binding protein Fused in 
Sarcoma/Translocated in Sarcoma),  ANG  (encodes angiogenin, ribonuclease, 
RNase A family, 5), and OPTN (encodes optineurin) (2). The most common muta-
tions associated to ALS and frontotemporal dementia, a variant of ALS, are the 
gain of toxicity by the nucleotide GGGGCC repeat expansions within the gene 
C9ORF72 (3). 

The relevance of glial cells on the onset and progression of ALS is now recog-
nized. In genetically modified mice, in which the SOD1 mutation was selectively 
excised from different central nervous system (CNS) cell types, it was observed 
that different glial cells significantly promote disease progression (4). Among 
these, dysfunctional astrocytes, with an aberrant and neurotoxic phenotype in 
the cerebral cortex and the SC of mSOD1 mice, were recognized as major 
 contributors. ALS astrocytes develop early deficits and lose neuro-supportive 
properties, secreting toxic factors that directly induce MN cell death (5, 6). In 
this chapter, we discuss the role of dysfunctional astrocytes in ALS with emphasis 
on astrocyte reactivity and heterogeneity, neurotransmitter transporters, and dys-
regulation of autocrine and paracrine mechanisms. 

ASTROCYTIC REACTIVITY AND HETEROGENEITY

The exact mechanisms for neuronal degeneration in ALS are still unclear, but 
astrocytes are recognized as important players in both upper and lower MN 
loss (4). Neuroinflammation and glial activation are observed at the onset of, and 
during, disease progression. Astrocytes express differential astrocytic receptors, 
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transporters, and neurotransmitters, and release neurotrophic factors, inflamma-
tory mediators and cytotoxins. These reactive astrocytes are observed in the cortex 
and SC of ALS patients, both in sALS and fALS cases (7). Glial cell proliferation 
and activation are found not only in motor areas, but also in non-motor areas, 
such as hippocampus, of mSOD1 rats, starting at the presymptomatic stage of the 
disease (8). SC mSOD1 astrocytes from newborn pups were shown to cause MN 
toxicity, long before any visible reactive gliosis (5). In ALS, these reactive astro-
cytes lose their physiological and homeostatic functions and acquire a neurotoxic 
and aberrant phenotype (5). Transplantation of SOD1 glial-restricted precursor 
cells into the SC of healthy rodents showed to differentiate into neurotoxic astro-
cytes and trigger MN degeneration (9), whereas transplantation of normal astro-
cyte precursors delayed disease progression and extended the survival of mSOD1 
rats (10). Astrocytes derived from sALS patients also led to MN degeneration after 
transplantation into mice (11). Thus, the identification of specific mechanisms 
and mediators of astrocyte toxicity offers important insights into the pathways of 
MN degeneration in ALS and the ways to prevent them. Both upper and lower 
MNs are affected in ALS, and astrocytes reveal regional diverse phenotypes, as 
depicted in Figure 1. 

Cortical and SC astrocytes cause neuronal dysfunction by specific and com-
mon pathological mechanisms (12). This is in line with the recent concept of 
astrocyte heterogeneity, either in the same zone of the CNS or across different 
regions (13). Reactive astrogliosis and graded reactions depend on microenviron-
mental cues and interactions between neighboring cells, as well as on autocrine 
signaling (14). In the mSOD1 mouse model, cortical astrocytes present an early 
hypertrophic/fibroblast-like morphology and a reactive and inflammatory pheno-
type. Such phenotype is characterized by decreased expression of glial fibrillary 
acidic protein (GFAP) and increased cell proliferative capacity, as well as elevated 
expression of S100 calcium (Ca2+)-binding protein B (S100B) and high mobility 
group box protein 1 (HMGB1). SC astrocytes appear to be more constrained than 
cortical ones, mainly in the presymptomatic stage, with decreased S100B and 
HMGB1 expression levels (12, 15). In late stages, a marked proliferative capacity 
and overexpression of S100B and HMGB1 is observed in astrocytes from the SC 
of ALS patients, and rodent models (16, 17). 

GFAP is the hallmark intermediate filament protein in astrocytes and its upreg-
ulation is usually associated with reactive astrogliosis (18). However, GFAP 
amount in adjacent astrocytes is extremely heterogeneous, as well as its expres-
sion in different regions (19, 20). Reactive GFAP-astrocytes were found in the 
ventral horn of ALS patients (21), with elevated appearance in the cerebrospinal 
fluid (CSF) relative to other neurologic diseases (22). Astrocytes with increased 
GFAP content and multiple inflammatory/reactive mediators were also identified 
in the SC of adult mice (23). While differential distribution of GFAP immunore-
activity was found in the white matter of the SC at early symptomatic transgenic 
mSOD1 mice, in the gray matter that was found only in the end-stage disease 
(24). In other studies, GFAP expression did not show differences between mSOD1 
and wild-type mice at 40 and 80 postnatal days, but strongly increased at terminal 
stages in the SC of mSOD1 mice (25). In contrast, our studies evidenced decreased 
levels of GFAP in the pre-symptomatic stage in the cortical brain (15) and in the 
SC of mSOD1 mice (17). Decreased GFAP expression levels were also found in 
astrocytes isolated from the brain cortex of mSOD1 pups, which presented 
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Figure 1. Astrocyte regional diversity and heterogeneity in ALS. Astrocytes in ALS are known to 
have an aberrant and reactive profile, expressing different astrocytic markers depending on 
their location in the central nervous system (cortical or spinal astrocytes), and stage of the 
disease (pre-symptomatic and symptomatic). Cortical astrocytes are less proliferative in the 
pre-symptomatic stage, where they show a decreased expression of GFAP, vimentin, 
glutamate transporters and NF-κB, and an increased expression of S100B and Cx43 (12, 15). In 
the symptomatic stage of the disease, cortical astrocytes are more proliferative, showing an 
increased expression of NF-κB, HMGB1, S100B and Cx43, together with a reduction of 
glutamate transporters and GFAP (12, 15). Spinal astrocytes in the pre-symptomatic stage 
exhibit a decreased expression of GFAP, S100B and HMGB1, while in the symptomatic stage 
astrocytes present a proliferative profile with increased expression of NF-κB, S100B, HMGB1 
and Cx43. The expression of GFAP in the symptomatic spinal astrocyte has been shown to 
increase or decrease, depending on the model, condition or region used in the study (16, 17, 
23, 24). Altogether, these data demonstrate the high diversity and heterogeneity of astrocytes 
in ALS. ALS, amyotrophic lateral sclerosis; Cx43, connexin-43, GFAP, glial fibrillary acidic 
protein; HMGB1, high mobility group box protein 1; miRNA-146a, microRNA-146a; NF-κB, 
nuclear factor kappa; S100B, S100 calcium-binding protein B. 
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aberrant astrocytic markers [increased S100B, connexin 43 (Cx43), Ki-67, and 
vimentin, together with decreased GFAP, glutamate transporter-1 (GLT-1) and 
glutamate/aspartate transporter (GLAST)], as found in the same region at the 
symptomatic stage (15). Such acquired “immature” or dedifferentiated astrocyte 
phenotype is neurotoxic and disease-specific in the cortical brain, and probably 
associated with the bulbar origin of the disorder (12). The early occurrence of 
such signature in 7-day-old astrocytes from the brain cortex of mSOD1 mice 
was  also observed in other disease models and related with the loss of neuro- 
supportive functions (26). Decreased expression of GFAP was similarly found in 
glial cell populations from the SC of symptomatic mSOD1 rats (16). When expres-
sion of mSOD1 was virally induced in cortical astrocytes, alterations in cell mor-
phology and density, together with low GFAP immunostaining were obtained 
(27). However, the loss of GFAP only marginally accelerated disease progression 
in the SOD1H46R transgenic mice (28). In sum, GFAP is not an absolute marker 
of reactivity, nor it strictly correlates with the disease severity. Variations in animal 
models, regional diversity, and specific astrocyte subpopulations may be the rea-
son for the disparate data found in the literature.

Increased expression of HMGB1 in reactive glia may lead to the activation of 
toll-like receptor/receptor for advanced glycation end-products (TLR/RAGE) sig-
naling pathways, and contribute to the progression of inflammation and MN 
injury (29). S100B is a Ca2+-binding protein that is highly expressed in astrocytes 
and, depending on its concentration, can have beneficial or deleterious effects. In 
ALS, S100B levels are increased in the CSF, positively correlating with a worse 
prognosis of the disease (30). The inhibition of S100B downregulates the expres-
sion of GFAP and cytokines, such as tumor necrosis factor (TNF)-α, C-C motif 
chemokine ligand 6 (CCL6), and C-X-C motif chemokine ligand 10 (CXCL10), 
indicating its association to a proinflammatory phenotype in mSOD1 astrocytes. 
Expression and release of pro-inflammatory cytokines lead to the activation of the 
nuclear factor kappa B (NF-κB) signaling cascade, a regulator of reactive gliosis 
and inflammation. In early stages of ALS, NF-κB activation in SC astrocytes can 
induce a neuroprotective phenotype, by promoting beneficial microglia activation 
and delaying disease progression. However, prolonged NF-κB activation in later 
stages exacerbates the immune response with pro-inflammatory microglial activa-
tion, gliosis, and disruption of the blood-SC barrier (31). Communication among 
astrocytes is promoted by connexin-based gap junctions, such as Cx43. 
Abnormally high Cx43 expression in the cortical and SC astrocytes of mSOD1 
mice and ALS patients is associated to astrocyte-mediated neurotoxicity (32).

Astrocytes in ALS release soluble toxic factors that promote MN degeneration 
(16), but still not clearly identified. Upregulation of the major histocompatibility 
complex I (MHC-I) in MNs seems to be associated with a slower disease progres-
sion (4). However, astrocytes in both mSOD1 mice and ALS patients were shown 
to downregulate the expression of MHC-I in MNs, by causing endoplasmic reticu-
lum (ER) stress, thus increasing their susceptibility to astrocyte-induced cell 
death (33). On the other hand, reactive astrocytes secrete increased transforming 
growth factor (TGF)-β1 that causes MN autophagic dysregulation, abnormal pro-
tein aggregation, and cellular toxicity (23). Astrocytes, when exposed to the CSF 
from ALS patients, release pro-inflammatory cytokines, such as interleukin (IL)-6, 
TNF-α, and interferon (IFN)-γ, together with increased levels of glutamate, reac-
tive oxygen species, and nitric oxide, causing neurotoxicity. These in turn lead to 
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a downregulation of neurotrophic factors, such as vascular endothelial growth 
factor (VEGF) and glial cell line-derived neurotrophic factor (GDNF) (34), as 
detailed below. In ALS, activated microglia secrete IL-1α, TNF-α, and comple-
ment component 1q (C1q), known to induce neurotoxic reactive astrocytes (35). 
Abrogation of IL-1α, TNF-α, and C1q was shown to reduce astrogliosis and 
extend mSOD1 mouse survival. In the absence of reactive astrocytes, MN death is 
significantly delayed (36). The major mechanisms leading to MN degeneration are 
summarized in Figure 2. 

Aberrant TDP-43 aggregation, a pathological hallmark of both ALS and 
frontotemporal dementia, was found in astrocytes and shown to contribute to 
neurodegeneration through cell-specific mechanisms (37). Astrocytes express-
ing mutated C9ORF72 show a deficient expression of antioxidant proteins, 
such as SOD1, SOD2 and peroxiredoxins (38). Altogether, astrocytes in ALS 
not only have a reactive and inflammatory phenotype, but also show impaired 
protective functions, which may be even exacerbated by the activation of other 
glial cells such as microglia (35). All these features indicate that astrocytes 
participate in the control and maintenance of homeostatic balance but, when 
dysregulated, they lead to neuroinflammation and MN death, thus supporting 
astrocyte’s key role in the onset and progression of ALS. It is not known if the 
appearance of an aberrant astrocyte signature previous to ALS symptom onset, 
in the brain cortex, results from intrinsic cell deficiencies or whether it is 
determined by MN paracrine pathological signaling. Dysregulated GFAP, 
S100B, and the marker of proliferation, Ki-67, in immature cortical astrocytes 
of mSOD1 pups agree with the first hypothesis. Identification of disease-spe-
cific astrocytic subpopulations will have a high impact on the understanding 
of their pathological role in ALS, and on their targeting toward the recovery of 
a neuroprotective phenotype. 

GLUTAMATE AND GABA TRANSPORTERS

Alterations in excitatory neurotransmission appear to play a role in ALS. 
Hyperexcitability has been observed in sALS and fALS patients before the onset of 
symptoms, and also in presymptomatic mSOD1 mouse models. However, other 
studies showed hypoexcitability, rather than hyperexcitability, prior to degenera-
tion (1, 37, 39). Thus, it is still unclear whether hyperexcitability leads to MN 
degeneration or if it is a compensatory mechanism resulting from MN loss. 
Astrocytes sustain homeostatic levels of extrasynaptic glutamate within the synap-
tic cleft to control synaptic transmission, mainly through specific glutamate trans-
porters, such as GLAST and GLT-1 (40). The GLT-1 transporter is found exclusively 
in astroglia, both in brain and SC, and is responsible for the uptake of nearly 90% 
of the glutamate. One of the proposed mechanisms for MN death in ALS is gluta-
mate-mediated excitotoxicity (1), since impaired glutamate clearance was shown 
in astrocytes expressing mSOD1 and TDP-43, suggesting a common pathological 
feature in ALS (Figure 3A) (41, 42). 

Defects in glutamate uptake by GLT-1 were found in the SC of ALS patients in 
regions of MN loss (43), in mSOD1 rodents (44), and in TDP-43 mice (45). 
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Figure 2. Reactive astrocytes promote MN degeneration in ALS. Astrocytes are known to have 
an aberrant and reactive profile in ALS, releasing several soluble toxic factors and 
inflammatory mediators that render MNs more susceptible to degeneration. Astrocytes 
respond to factors released to the milieu by activated microglia, such as TNF-α, IL-1α and 
C1q. Reactive astrocytes secrete high levels of pro-inflammatory cytokines, glutamate, ROS 
and NO, as well as lower levels of neurotrophic factors, such as VEGF and GDNF (34). 
Moreover, astrocytes can downregulate the expression of MHC-I in MNs, by causing ER 
stress and making them more susceptible to astrocyte-induced cell death (33). Reactive 
astrocytes also promote defects in autophagy by secretion of TGF-β1 and activation of the 
rapamycin signaling pathway in MNs (23). Besides soluble factors, exosomes derived from 
ALS astrocytes also transfer miRNAs and mutant and misfolded proteins to neighboring cells 
(35, 36). Altogether, astrocytes can contribute to abnormal protein aggregation and cellular 
toxicity. ALS, amyotrophic lateral sclerosis; C1q, complement component 1q; ER, 
endoplasmic reticulum; GDNF, glial cell line-derived neurotrophic factor; IL-1α, interleukin 1 
alpha; miRNA, microRNA; MHC-I, major histocompatibility complex I; MNs, motor neurons; 
NO, nitric oxide; ROS, reactive oxygen species; TGF-β1, transforming growth factor beta 1; 
TNF-α, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.



Vaz SH et al.42

Figure 3. Glutamate-mediated excitotoxicity in ALS. A. In ALS, the astrocytic glutamate 
transporter GLT-1 is downregulated, leading to an impaired glutamate uptake, and the TNF-α/
TNFR1/NF-κB pathway modulates its expression levels (48). Membralin is reduced in the 
spinal cord of ALS patients and ALS mouse models, and its deletion was shown to suppress 
GLT-1 expression through the TNF-α/TNFR1/NF-κB pathway (49). AEG-1 is upregulated in ALS 
and its silencing restores GLT-1 expression and inhibits NF-κB signaling (50). Caspase-3 
cleaves GLT-1 and leads to the accumulation of a sumoylated C-terminus fragment, the 
CTE-SUMO1. The accumulation of this fragment causes astrocytes to alter their phenotypes 
and secrete toxic factors to MNs (51). Metabotropic glutamate receptors, such as mGluR5, 
are overexpressed in ALS, but their function was shown to be altered. PKC-ε is reduced in 
astrocytes, leading to the generation of atypical Ca2+ oscillations and impaired glutamate 
uptake (58, 59). B. Glutamate release has been shown to be abnormally increased in ALS. 
Exposure to GABA or glycine leads to an abnormal GAT1 or GlyT1/2-mediated glutamate 
release (62). Astrocytes also release high levels of glutamate through the upregulation of 
cystine/glutamate antiporters (xCT), in response to oxidative stress (65). Elevated symbiotic 
Cyanobacteria increases glutamate, linking gut microbiota to ALS (66). AEG-1, astrocyte 
elevated gene 1; ALS, amyotrophic lateral sclerosis; Ca2+, calcium; GABA, gamma 
aminobutyric acid; GAT1, GABA transporter type 1; GlyT, glycine transporter; GLT-1, 
glutamate transporter 1; mGluR, metabotropic glutamate receptor 5; MNs, motor neurons; 
NF-κB, nuclear factor-kappa B; PKC-ε, protein kinase C-epsilon; TNF-α, tumor necrosis factor 
alpha; TNFR1, tumor necrosis factor receptor 1; xCT, cystine/glutamate antiporters.
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Several pathways have been implicated in the modulation of GLT-1 levels: (i) 
TNF-α and downstream NF-κB signaling have been shown to suppress GLT-1 
expression (46); (ii) the specific deletion of the ER-component membralin causes 
a dramatic accumulation of extracellular glutamate, inducing MN glutamatergic 
toxicity (47); and (iii) decreased GLT-1 expression and glutamate uptake also 
occur as result of increased astrocyte elevated gene-1 (AEG-1) in mSOD1 astro-
cytes (48). Moreover, GLT-1 cleavage may derive from the action of caspase-3, 
with accumulation of a sumoylated GLT-1 C-terminus fragment early on the 
 disease, causing astrocyte phenotypic aberrancies and release of neurotoxic 
 factors (49). Modulation of GLT-1 to potentially prevent excitotoxicity has been 
attempted. Although, SC focal restoration of GLT-1 expression in astrocytes was 
not effective (50), enhanced GLT-1 translation by LDN/OSU-0212320 delayed 
MN function decline and extended the lifespan of mSOD1 mice (51). MC1568, 
an inhibitor of the enzymes Class-II histone deacetylases, restored GLT-1 expres-
sion and glutamate uptake in the SC of mSOD1 mice, but did not prolong their 
survival (52). Activation of the metabotropic glutamate receptors (mGluRs), 
mGluR1 and mGluR5, leads to increased intracellular Ca2+ and facilitates gluta-
mate transport (53). In line with this, when the overexpression of dysfunctional 
mGluR1 and mGluR5 in reactive SC astrocytes from ALS patients and mSOD1 
mice was reduced, it prevented excessive glutamate release, improved the func-
tion of MNs, astrocytes and microglia, and increased animal survival (54, 55). 
Deficient glutamate uptake was linked to altered mGluR5-mediated Ca2+  signaling 
profile (56). By restoring Ca2+ oscillations in astrocytes from mSOD1 rats, 
mGluR5-mediated glutamate uptake was recovered (Figure 3A) (57). While 
 glutamate is the major excitatory neurotransmitter in the CNS, gamma-aminobu-
tyric acid (GABA) and glycine are the main inhibitory neurotransmitters. Raiteri 
et al. have shown that the activation of a glycine transporter on SC MNs caused 
enhanced glutamate release in a mouse model of ALS (58). Moreover, in the SC 
glutamatergic synaptic boutons of mSOD1 mice, the impact of synaptic vesicle 
exocytosis on the trafficking of nerve terminal GABA transporter-1 (GAT-1) and of 
type-1/2 glycine (Gly) transporters (GlyT-1/2) was studied by monitoring mem-
brane expression and function of these transporters. It was observed that the 
enhanced exocytosis in mSOD1 mice boosts heterotransporter membrane expres-
sion, which evokes excessive glutamate release (Figure 3B) (59). GlyT1/2 and 
GAT1 are widely expressed in astrocytes and gliosomes (60), together with GABA 
and glutamate transporters. GABA-induced release of glutamate from SC glio-
somes is enhanced in mSOD1 mice (61). Astrocytes were also shown to release 
higher levels of glutamate, through cystine/glutamate antiporters, in response to 
oxidative stress (62). SOD1 mutation was shown to reduce intracellular lactate 
levels and its secretion by astrocytes (63). Studies linking ALS with gut microbiota 
composition identified that elevated symbiotic Cyanobacteria could promote the 
elevation of glutamate, in contrast to the general Lactobacillus, Bifidobacterium, 
and Odoribacter––all known to metabolize glutamate (64). These findings open 
an all-new window of opportunities to characterize microbiota changes as ALS 
biomarkers and microbial strategies to improve health status quality of ALS 
patients. 
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DYSREGULATED AUTOCRINE/PARACRINE SIGNALING 
MECHANISMS

Astrocytes have a unique form of excitability, which is characterized by intracel-
lular Ca2+ oscillations or waves in response to physiological and pathophysiologi-
cal signals. Intracellular Ca2+ elevation is triggered by several mechanisms, such 
as: (i) activation of Gq-protein-coupled receptors (GPCRs); (ii) GABAB receptor 
(Gi-coupled GPCRs) activation (65); and (iii) transient receptor potential (TRP) 
channels (66). Spatially restricted Ca2+ transients in astrocyte microdomains are 
associated with mitochondria (67). Altogether, they promote the release of glio-
transmitters, such as glutamate, D-serine, GABA and neurotoxic factors (68). 

The pathogenic potential of Ca2+ dysregulation in astrocytes may account for 
disease progression. ALS astrocytes show mitochondrial functional deficiencies 
and impaired Ca2+ homeostasis that promotes MN degeneration (69). In the SC of 
young mSOD1 mice, the enhanced expression of mGluR5 makes astrocytes vul-
nerable to glutamate, and causes persistent elevation of intracellular Ca2+ concen-
trations, which are reverted by Bcl-XL, and protein kinase C epsilon (Figure 3A) 
(57, 70). Administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)
pyridine (MPEP) slowed astrocyte degeneration, delayed disease onset and 
extended mSOD1 mouse survival (71). Also, purinergic stimulation of SC and 
cortical SOD1-expressing astrocytes caused ER Ca2+ accumulation and abnormal 
Ca2+ signaling (72). The increased expression of Cx43 in mSOD1 mice also has a 
significant impact on Ca2+ signaling (73). Intracellular Ca2+ increase in astrocytes 
leads to the release of gliotransmitters, including glutamate, D-serine, GABA, 
brain derived neurotrophic factor (BDNF), as well as neurotoxic factors (68). 
Since astrocytes in ALS reveal many pathogenic changes, such as disrupted 
 receptor-mediated Ca2+ signaling and mitochondrial functional deficiencies, it is 
anticipated that an impaired gliotransmitter release from ALS astrocytes will play 
a major role in MN pathology. 

The storage and release of bioactive molecules by astrocytes involve mecha-
nisms of exocytosis, diffusion through plasma membrane channels, and transloca-
tion by plasma membrane transporters. The soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor (SNARE)-dependent vesicular exocytotic 
release is one of the major pathways for astrocyte secretion. ER Ca2+ release 
induces elevated ATP in mSOD1 astrocytes, which can be inhibited by the over-
expression of dominant-negative SNARE to prevent toxicity to MNs and delay 
disease onset in mSOD1 mice (72). Similarly, pharmacological inhibition of P2X7 
receptor abolished astrocyte toxicity towards MNs through degradation of extra-
cellular ATP in mSOD1 mice (74, 75). Since P2X7 receptors form pores under 
pathophysiological conditions, P2X7 may function as membrane channels that 
allow the release of glutamate or toxic agents, thus accounting for ALS progression 
(Figure 3B). 

Neurotrophic factors, in particular neurotrophins, are crucial for neuronal dif-
ferentiation, maturation and survival, as well as for the modulation of synaptic 
transmission and plasticity (76). They are also potential therapeutic targets for 
neurodegenerative disorders, such as ALS (77). The neurotrophin family is com-
posed of four members: nerve growth factor (NGF), BDNF, neurotrophin-3  (NT-3) 
and neurotrophin-4 (NT-4). BDNF is abundantly expressed in the CNS, where it 
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supports neuronal survival (e.g., MNs) (77). SC astrocytes from mSOD1 mice 
respond to HMGB1 by decreasing BDNF and GDNF production, in contrast to 
wild-type astrocytes (78). Also, as previously mentioned, astrocytes exposed to 
the CSF of ALS patients, besides releasing neurotoxic factors, release lower levels 
of VEGF and GDNF (34).

ALS pathophysiology is intimately related with neuroinflammatory processes, 
which include the release of both neuroprotective and/or neurotoxic factors that 
play a role in MN pathology (79). Several studies have shown that TGF-β signal-
ing is involved in ALS and that TGF-β1 release from astrocytes accelerates disease 
progression in ALS mice (23). Extracellular vesicles with ~40–160 nm, denomi-
nated exosomes, are released from mSOD1 astrocytes and were shown to contain 
mutant SOD1 and dysregulated cargo in miRNAs, accounting for MN pathology 
and homeostatic imbalance (80, 81). miRNAs are small non-coding RNAs that 
control posttranscriptional expression of target genes (82). Dying neurons in ALS 
release miRNAs, such as miRNA(miR)-218, that can change the phenotype of 
astrocytes into a reactive one and cause the downregulation of GLT-1 (83). In 
most cases, exosomal cargo in miRNAs recapitulate their cell of origin (84, 85). 
Dysregulated expression of miRNAs was found in ALS (86, 87) and proposed as 
biomarkers (88). Upregulation of miR-155 was identified in fALS and sALS 
patients, as well as in the SC of mSOD1 mice, in pre-symptomatic and symptom-
atic stages (17). In contrast, a decreased cargo in miR-494-3p was found in 
C9ORF72 astrocyte-derived exosomes with harmful consequences in neurite net-
work in ALS (89). Depleted levels of miR-146a were also recognized in exosomes 
from the cortical astrocytes of mSOD1 mice (15), and its cellular replenishment 
abrogated the astrocyte aberrant phenotype, characterized by increased S100B 
and Cx43 levels, together with decreased GFAP, while leading to a secretome with 
paracrine neuroprotective properties (81). Exosomes from both cortical and spi-
nal mSOD1 astrocytes were deficient in miR-155, miR-21 and miR-146a (12). 
Exosomes with low levels of miRNAs may lead to paracrine dysregulation and 
dysfunction of recipient cells, while also activating immune-associated cells (90). 
Exosomes may serve as potential therapeutic targets in ALS and prognostic mark-
ers for therapy in precision medicine through patient stratification. 

CONCLUSION

The role of dysfunctional astrocytes in the pathogenesis of ALS indicates that 
astrocytes may be targeted with strategies for their revival. These strategies may 
include direct intervention on astrocytes with modulatory medicines, exosomes 
and miRNA-based therapies, or their replacement (Figure 4). Considering the 
first approach, activation of the nuclear factor erythroid 2–related factor (Nrf2) 
was shown to increase glutathione secretion; although some beneficial effects 
were observed on glial reactivity, it did not affect survival in mSOD1 mouse 
models (4). Reduction of reactive oxygen species production has been attempted, 
but again with no effective benefits (91). Another approach was the overexpres-
sion of MHC-I in MNs to enhance their resistance to the toxic factors released by 
the reactive astrocytes; this approach enhanced the survival of mSOD1 mice (33). 
As the aberrant astrocytes are associated with inflammatory and immune 
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Figure 4. Targeting astrocytes for therapy. For functional recovery, astrocyte intervention 
strategies for ALS may include the modulation of astrocytic activity by using medicines or 
exosomes, astrocyte-based cell transplantation, and astrosomes (98). The switch of the 
phenotypic aberrancies and dysfunctionalities of the cell toward the steady-state astrocyte 
phenotype may include the inhibition of inflammatory mechanisms and oxidative stress 
(4, 36), increased resilience to paracrine toxic or inflammatory mediators released by MNs 
and activated microglia, or the boost of the cell, if senescent. Another possibility is the 
delivery of miRNA-based therapies, using miRNA mimics and/or inhibitors (36). For 
astrocyte-based cell therapy, patient-derived astrocytes, and glial progenitor cells/glial 
restricted precursor cells (4) may be used. The delivery of astrosomes, as artificial astrocytes, 
is an alternative strategy based on their ability to scavenge hydrogen peroxide, ROS, and 
ammonia, thus decreasing the excitotoxicity and the oxidative stress associated with ALS 
(96–98). ALS, amyotrophic lateral sclerosis; GDH, glutamate dehydrogenase; GSH, reduced 
glutathione; GTR, glutathione reductase; GSSG, oxidized glutathione; H2O2, hydrogen 
peroxide; L-Glu, L-glutamate; α-KG, α-ketoglutarate; miRNA, microRNA; MN, motor neuron; 
NH4

+, ammonia; NO, nitric oxide; Pt-NP, platinum nanoparticle; ROS, reactive oxygen 
species. 
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mechanisms (15, 17), modulation of such mechanisms with specific miRNA-
based strategies may prevent cell-to-cell paracrine dysregulation and MN degen-
eration (81, 86).

The use of patient-derived astrocytes by reprogramming techniques brought 
new possibilities of therapeutic intervention, mainly because drug testing can be 
done in cells from sALS patients (92, 93). Transplantation of glial restricted pre-
cursor cells (94), combined with strategies capable of defending these cells from 
local toxicity (4), may represent innovative therapeutic approaches for ALS. 
Transplantation of neural progenitor cells expressing GDNF into the motor cortex 
of mSOD1 rats showed promise in extending their survival (95). Moreover, 
Armada-Moreira and colleagues developed an artificial astrocyte (“astrosome”) 
capable of scavenging hydrogen peroxide and ammonia, by using platinum 
nanoparticles as artificial enzymes, as well as enzymes capable of glutamate deg-
radation (96–98). Therefore, these microreactors have the potential to provide a 
therapeutic approach for several neurological diseases, such as ALS, in which 
oxidative stress and excitotoxicity are observed. We now have the possibility to 
work with human astrocytes differentiated from sALS and fALS patients and soon 
it will be possible to identify new targets and stratify patient astrocyte phenotypes, 
by using 3D microfluidic system models, and test promising therapeutics. 
Ultimately, this will provide a better understanding of the contribution of 
 astrocytes in ALS, and how we might apply novel therapeutic strategies aimed at 
producing the revival of astrocytes, or even their replacement, and help in halting, 
or at least delaying ALS progression.
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Abstract: Amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative 
disease characterized by progressive muscular weakness and atrophy. The primary 
feature of amyotrophic lateral sclerosis is the selective loss of motoneurons in the 
brain and spinal cord. However, changes in synaptic transmission and motoneu-
ron excitability are among the first events that take place during development and 
accompany the relentless deterioration of motor circuitry. This chapter aims to 
summarize the current understanding of defects in intrinsic electrophysiological 
properties of motoneurons, local GABAergic and glycinergic inhibitory as well as 
cholinergic modulatory interneuron networks, and long-range glutamatergic 
excitatory input neurons that can precede disease onset or occur during the pro-
gression of the disease. We summarize evidence that therapeutic options that tar-
get synaptic transmission and intrinsic features of motoneurons might represent 
novel effective strategies for patients with amyotrophic lateral sclerosis.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder affecting both 
upper motoneurons in the cerebral cortex and lower motoneurons in the brain-
stem and spinal cord. Upper motoneurons are glutamatergic descending neurons 
that synapse directly or indirectly via interneurons onto lower motoneurons typi-
cally through the corticobulbar and corticospinal tracts. Lower motoneurons are 
multipolar cholinergic neurons whose axons exit the central nervous system to 
innervate skeletal muscles to produce movement. Consequently, ALS leads to pro-
gressive muscle atrophy and weakness and eventual paralysis. Death occurs within 
3 years of symptom onset, typically from respiratory failure. Sporadic ALS 
accounts for approximately 90% of cases; the remaining 10% are hereditary and 
referred to as familial (1). The discovery of ALS-causing mutations in the superox-
ide dismutase-1 (SOD1) gene in 1993 led to the generation of transgenic mice that 
recapitulate the key features of the disease. SOD1-mutant mice, with other experi-
mental models that have emerged following identification of a rapidly growing 
number of ALS-associated genes, have helped to learn about the molecular and 
cellular processes underlying the disease. Both cell- and non-cell-autonomous 
mechanisms contribute to the dysfunction and death of motoneurons. The expres-
sion of ALS-causing factors in glial cells, which include astrocytes, microglia, and 
oligodendrocytes, contribute to the selective death of motoneurons, which them-
selves present with a significant vulnerability due to these same determining fac-
tors (2–4). T lymphocytes infiltrating the central nervous system and peripheral 
macrophages are other cellular factors that participate in the pathogenesis of ALS 
(5–7). Non-cell-autonomous mechanisms may support dysfunction before the 
first clinical signs are evident or accompany motor decline during the symptom-
atic phase. The earliest signs, which are detected during embryonic and postnatal 
development and that will pave the way for the rest of the disease course in ALS 
mice, are linked to the electrophysiological properties and circuitry of motoneu-
rons. Moreover, in humans, asymptomatic mutation carriers can exhibit electro-
physiological abnormalities such as intracortical facilitation (ICF) transmission 
deficits, which can be observed 30 years before the onset of symptoms (8). Here, 
we review alterations of intrinsic electrophysiological features of motoneurons 
and synaptic transmission, including changes in inhibitory, excitatory, and modu-
latory signals, observed in patients with ALS and in mice. We discuss how these 
changes might be considered promising therapeutic targets for new and effective 
treatments for this devastating disease.

ELECTROPHYSIOLOGICAL PROPERTIES OF 
MOTONEURONS IN ALS

Motoneurons acquire molecular properties during their differentiation  throughout 
embryonic development as a result of dynamic interplay between spatial and 
temporal expression of families of transcription factors and diffusible  morphogens. 
In the terminal step of differentiation, the combinatorial activity of terminal 
effector genes defines the features of individual postmitotic motoneurons. 
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This battery of terminal identity genes governs the synthesis of neurotransmitters 
and expression of neurotransmitter receptors, ion channels, and axon guidance 
and synaptic adhesion molecules (9, 10). At these early stages of development, 
the first wirings of neuronal circuits proceed with axon outgrowth toward appro-
priate targets and by the complex interaction of both intrinsic genetic instruc-
tions and environmental cues. Spinal motoneurons are organized into motor 
columns along the rostrocaudal and ventrodorsal axes that project to a single 
muscle target in the periphery. Long descending premotor projection neurons 
from the spinal cord and supraspinal centers, as well as proprioceptive afferents, 
begin to establish the spinal motor circuitry during embryonic development 
(11,  12). The extensive dendritic arborization of motoneurons that integrates 
synaptic inputs critical for circuit formation and plasticity is shaped (13), and the 
diversity of local interneuron subtypes that direct early motor output enables 
further adaptive motor behavior (14). Among the developmental processes that 
build a coherent motor circuitry, the early calcium-mediated electrical activity 
and acquisition of intrinsic electrophysiological properties are critical factors. 
Expression of ion channels at the plasma membrane determines the intrinsic 
responses of motoneurons and undergoes dynamic changes from embryonic to 
postnatal development (15, 16). These multiple components of a developmental 
program represent a cornerstone establishing movement coordination, control, 
and skill that will be fundamental throughout the life span. The concept that 
alterations to these components can occur very early in the life of patients has 
been explored through animal models of the disease. Although the first clinical 
signs, and significant loss of motoneurons, appear in adults, early molecular and 
cellular signs have been documented in ALS mice. In SOD1G93A mice, the first 
motor symptoms appear at around 90 days of age, but activation of cellular stress 
pathways can be observed in vulnerable motoneurons as early as postnatal day 
(P)12, and dysfunction of the neuromuscular junction is already noticeable at 
P50 (17, 18). However, the earliest alterations that evidence a functional defect 
are those observed during the developmental stages of the motor system and are 
associated with motoneurons’ acquisition of electrophysiological properties and 
the integration of motoneurons into the motor circuitry. 

Electrophysiological changes in motoneurons during embryonic and 
postnatal development 

Some differences in the resting membrane potential (RMP), input resistance, 
capacitance, and rheobase have been observed in different experimental systems 
(isolated neurons from mouse or humans, spinal preparations, brainstem and spi-
nal cord slices) at different stages (from embryonic day (E) 17.5 to P10, or after 
11 weeks of differentiation in vitro) and in the presence of different ALS-causing 
mutations. However, changes in cell properties do not emerge as a common 
salient feature of ALS motoneurons (Table 1). The spike features, which include 
action potential (AP) threshold, delay to AP (i.e., the time interval between cur-
rent injection and spike onset), AP amplitude, AP duration, rate of AP rise, and 
repolarization, as well as after-hyperpolarization (AHP) characteristics, are for the 
most part similar in experimental ALS models and controls. There have been dis-
crepancies in the AP duration and the rate of AP rise between different studies in 



Scamps F et al.58

TA
B

LE
 1

 
A

lt
er

at
io

ns
 o

f m
ot

on
eu

ro
n 

el
ec

tr
op

hy
si

ol
og

ic
al

 fe
at

ur
es

 in
 A

LS
 m

od
el

s 

Em
b

ry
o

ni
c 

p
ri

m
ar

y 
cu

lt
ur

e
iP

SC
-d

er
iv

ed
 

ne
ur

o
n 

cu
lt

ur
e

Em
b

ry
o

ni
c 

sp
in

al
 

co
rd

 p
re

p
ar

at
io

n
Po

st
na

ta
l 

b
ra

in
st

em
 s

lic
e

Po
st

na
ta

l s
p

in
al

 c
o

rd
 

sl
ic

e
Po

st
na

ta
l s

p
in

al
 

co
rd

 p
re

p
ar

at
io

n

R
M

P
U

nc
ha

ng
ed

 
(2

1–
24

)
U

nc
ha

ng
ed

 (
28

, 3
0,

 
31

),
 D

ep
ol

ar
iz

ed
 

(2
7)

U
nc

ha
ng

ed
 

(2
5,

 3
4)

U
nc

ha
ng

ed
 (

26
)

U
nc

ha
ng

ed
 (

20
, 2

3)
, 

de
po

la
ri

ze
d 

(1
9)

U
nc

ha
ng

ed
 (

29
)

In
p

u
t 

re
si

st
an

ce
U

nc
ha

ng
ed

 
(2

1–
23

)
U

nc
ha

ng
ed

 (
27

, 2
8,

 
30

, 3
1)

In
cr

ea
se

d 
(2

5,
 3

4)
U

nc
ha

ng
ed

 (
26

)
U

nc
ha

ng
ed

 (
19

, 2
3)

Lo
w

er
 (

29
)

C
ap

ac
it

an
ce

U
nc

ha
ng

ed
 (

21
)

U
nc

ha
ng

ed
 (

28
, 3

0)
, 

de
cr

ea
se

d 
(3

0)
, 

in
cr

ea
se

d 
(2

7)

D
ec

re
as

ed
 (

25
)

U
nc

ha
ng

ed
 (

20
)

In
cr

ea
se

d 
(2

9)

A
P

 t
h

re
sh

ol
d

U
nc

ha
ng

ed
 (

21
, 

22
, 2

4)
U

nc
ha

ng
ed

 (
28

)
U

nc
ha

ng
ed

 (
25

)
U

nc
ha

ng
ed

 (
26

)
U

nc
ha

ng
ed

 (
19

, 2
0,

 2
3)

D
el

ay
 t

o 
A

P
U

nc
ha

ng
ed

 (
21

)
in

cr
ea

se
d 

(2
5)

U
nc

ha
ng

ed
 (

19
)

A
P

 a
m

p
li

tu
d

e
U

nc
ha

ng
ed

 
(2

1–
24

)
U

nc
ha

ng
ed

 (
28

)
U

nc
ha

ng
ed

 (
25

)
In

cr
ea

se
d 

(2
6)

U
nc

ha
ng

ed
 (

23
),

 
de

cr
ea

se
d 

(1
9)

A
P

 d
u

ra
ti

on
U

nc
ha

ng
ed

 
(2

1–
24

)
U

nc
ha

ng
ed

 (
28

)
U

nc
ha

ng
ed

 (
25

)
U

nc
ha

ng
ed

 (
26

)
U

nc
ha

ng
ed

 (
23

),
 

de
cr

ea
se

d 
(2

0)
, 

in
cr

ea
se

d 
(1

9)

D
ec

re
as

ed
 (

29
)

R
at

e 
of

 A
P

 r
is

e
U

nc
ha

ng
ed

 (
21

, 2
4)

In
cr

ea
se

d 
(2

0)
, 

de
cr

ea
se

d 
(1

9)

R
at

e 
of

 
re

p
ol

ar
iz

at
io

n
In

cr
ea

se
d 

(2
1)

In
cr

ea
se

d 
(2

0)

A
H

P
 c

h
ar

ac
te

ri
st

ic
s

U
nc

ha
ng

ed
 

(2
2–

24
)

U
nc

ha
ng

ed
 (

28
)

U
nc

ha
ng

ed
 (

25
)

U
nc

ha
ng

ed
 (

26
)

U
nc

ha
ng

ed
 (

19
, 2

3)
, 

de
cr

ea
se

d 
τ 

(2
0)

U
nc

ha
ng

ed
 (

29
)



Electrophysiological Defects of ALS motoneurons 59

TA
B

LE
 1

 
A

lt
er

at
io

ns
 o

f m
ot

on
eu

ro
n 

el
ec

tr
op

hy
si

ol
og

ic
al

 fe
at

ur
es

 in
 A

LS
 m

od
el

s 
(C

on
ti

nu
ed

)

Em
b

ry
o

ni
c 

p
ri

m
ar

y 
cu

lt
ur

e
iP

SC
-d

er
iv

ed
 

ne
ur

o
n 

cu
lt

ur
e

Em
b

ry
o

ni
c 

sp
in

al
 

co
rd

 p
re

p
ar

at
io

n
Po

st
na

ta
l 

b
ra

in
st

em
 s

lic
e

Po
st

na
ta

l s
p

in
al

 c
o

rd
 

sl
ic

e
Po

st
na

ta
l s

p
in

al
 

co
rd

 p
re

p
ar

at
io

n

F
ir

in
g 

fr
eq

u
en

cy
In

cr
ea

se
d 

(2
1–

24
)

In
cr

ea
se

d 
(2

7,
 2

8)
, 

de
cr

ea
se

d 
(2

7,
 3

0,
 3

1)

In
cr

ea
se

d 
(2

5)
In

cr
ea

se
d 

(2
6)

U
nc

ha
ng

ed
 (

20
),

 
in

cr
ea

se
d 

(2
3)

, 
de

cr
ea

se
d 

(1
9)

D
ec

re
as

ed
 (

29
)

M
ax

im
u

m
 fi

ri
n

g 
ra

te
In

cr
ea

se
d 

(2
3)

U
nc

ha
ng

ed
 (

25
)

U
nc

ha
ng

ed
 (

29
)

N
a+  

cu
rr

en
t 

p
ea

k
U

nc
ha

ng
ed

 (
25

0)
U

nc
ha

ng
ed

 
(2

7,
 2

8,
 3

0)
, 

de
cr

ea
se

d 
(2

7,
 3

0)

K
+  

cu
rr

en
t 

p
ea

k
U

nc
ha

ng
ed

 (
27

),
 

de
cr

ea
se

d 
(2

7,
 2

8)
,  

in
cr

ea
se

d 
(3

0)

P
er

si
st

en
t 

N
a+  

cu
rr

en
t

In
cr

ea
se

d 
(2

4)
In

cr
ea

se
d 

(2
6)

In
cr

ea
se

d 
(2

0)

P
er

si
st

en
t 

C
a2+

 

cu
rr

en
t

In
cr

ea
se

d 
(2

2)
In

cr
ea

se
d 

(2
0)

H
V

A
 C

a2+
 c

u
rr

en
ts

In
cr

ea
se

d 
(2

2)

R
ec

ov
er

y 
fr

om
 f

as
t 

in
ac

ti
va

ti
on

 
(N

a+  
cu

rr
en

t)

In
cr

ea
se

d 
(2

50
)



Scamps F et al.60

TA
B

LE
 1

 
A

lt
er

at
io

ns
 o

f m
ot

on
eu

ro
n 

el
ec

tr
op

hy
si

ol
og

ic
al

 fe
at

ur
es

 in
 A

LS
 m

od
el

s 
(C

on
ti

nu
ed

)

Em
b

ry
o

ni
c 

p
ri

m
ar

y 
cu

lt
ur

e
iP

SC
-d

er
iv

ed
 

ne
ur

o
n 

cu
lt

ur
e

Em
b

ry
o

ni
c 

sp
in

al
 

co
rd

 p
re

p
ar

at
io

n
Po

st
na

ta
l 

b
ra

in
st

em
 s

lic
e

Po
st

na
ta

l s
p

in
al

 c
o

rd
 

sl
ic

e
Po

st
na

ta
l s

p
in

al
 

co
rd

 p
re

p
ar

at
io

n

Sp
on

ta
n

eo
u

s 
m

ot
on

eu
ro

n
 

ac
ti

vi
ty

In
cr

ea
se

d 
(2

4)
In

cr
ea

se
d 

(2
8)

, 
un

ch
an

ge
d 

(3
0)

, 
re

du
ce

d 
(3

0)

Sp
on

ta
n

eo
u

s 
lo

co
m

ot
or

 
ou

tp
u

ts

U
nc

ha
ng

ed
 (

36
),

 
In

cr
ea

se
d 

bu
rs

t 
du

ra
ti

on
 (

37
)

E
vo

ke
d

 r
h

yt
h

m
ic

 
ac

ti
vi

ty
Sl

ow
er

 r
hy

th
m

 
pe

ri
od

 (
34

)
U

nc
ha

ng
ed

 (
35

),
 

ab
se

nt
 in

 lu
m

ba
r 

bu
t 

no
t 

in
 s

ac
ra

l 
ro

ot
s 

(3
6)

N
or

ad
re

n
er

gi
c 

se
n

si
ti

vi
ty

In
cr

ea
se

d 
(3

5)

T
he

 p
ro

pe
rt

ie
s 

of
 m

ot
on

eu
ro

ns
 in

 d
iff

er
en

t 
ex

pe
ri

m
en

ta
l A

LS
 m

od
el

s 
w

er
e 

co
m

pa
re

d 
to

 t
he

ir
 r

es
pe

ct
iv

e 
co

nt
ro

ls
. E

m
br

yo
ni

c 
pr

im
ar

y 
cu

lt
ur

e:
 n

eu
ro

ns
 w

er
e 

is
ol

at
ed

 fr
om

 E
12

–1
4 

m
ic

e 
an

d 
cu

lt
ur

ed
 fo

r 
2–

4 
w

ee
ks

 b
ef

or
e 

re
co

rd
in

g 
(2

3,
 2

4)
, f

ro
m

 E
15

 m
ic

e 
an

d 
cu

lt
ur

ed
 fo

r 
2–

3 
w

ee
ks

 (
21

),
 fr

om
 E

13
 m

ic
e 

an
d 

cu
lt

ur
ed

 fo
r 

2–
3 

w
ee

ks
 (

22
),

 fr
om

 E
12

–1
4 

m
ic

e 
an

d 
cu

lt
ur

ed
 fo

r 
12

–1
6 

da
ys

 (
76

),
 o

r 
fr

om
 E

15
 a

nd
 c

ul
tu

re
d 

fo
r 

8–
13

 d
ay

s 
(2

50
).

 E
m

br
yo

ni
c 

sp
in

al
 c

or
d 

pr
ep

ar
at

io
ns

 w
er

e 
ob

ta
in

ed
 fr

om
 E

17
.5

 m
ic

e 
(2

5,
 3

4)
. P

os
tn

at
al

 b
ra

in
st

em
 s

lic
es

 w
er

e 
ob

ta
in

ed
 fr

om
 

P4
-P

10
 m

ic
e 

(2
6)

. P
os

tn
at

al
 s

pi
na

l c
or

d 
sl

ic
es

 w
er

e 
ob

ta
in

ed
 fr

om
 P

0–
P1

2 
(2

0)
, P

7 
(2

3)
, o

r 
P6

–P
10

 m
ic

e 
(1

9)
. P

os
tn

at
al

 s
pi

na
l c

or
d 

pr
ep

ar
at

io
ns

 w
er

e 
ob

ta
in

ed
 fr

om
 P

1–
P3

 (
35

),
 P

3 
(3

7)
, 

P3
–P

6 
(3

6)
, a

nd
 P

6–
P1

0 
m

ic
e 

(2
9)

. R
eg

ar
di

ng
 iP

SC
-d

er
iv

ed
 m

ot
on

eu
ro

ns
, r

ec
or

di
ng

s 
w

er
e 

pe
rf

or
m

ed
 a

ft
er

 1
4 

or
 2

8 
da

ys
 (

28
),

 6
6–

79
 d

ay
s 

(3
1)

, 3
–1

0 
w

ee
ks

 (
27

) 
of

 n
eu

ro
na

l d
iff

er
en

ti
at

io
n.

 
O

f n
ot

e,
 in

 (
30

),
 e

le
ct

ro
ph

ys
io

lo
gi

ca
l p

ro
pe

rt
ie

s 
ch

an
ge

 w
it

h 
di

ffe
re

nt
ia

ti
on

 t
im

e:
 3

–4
 w

ee
ks

 v
er

su
s 

7 
w

ee
ks

. R
M

P 
de

pe
nd

s 
on

 A
LS

 p
at

ie
nt

 li
ne

s 
an

d 
ti

m
e 

in
 c

ul
tu

re
, fi

ri
ng

 fr
eq

ue
nc

y 
va

ri
es

 
be

tw
ee

n 
ti

m
e 

of
 m

at
ur

at
io

n 
(2

7)
. O

f n
ot

e,
 a

n 
in

cr
ea

se
d 

am
pl

it
ud

e 
of

 d
el

ay
-r

ec
ti

fy
in

g 
po

ta
ss

iu
m

 (
K

+ )
 c

ur
re

nt
 p

ea
ks

 c
an

 b
e 

ob
se

rv
ed

 in
 m

ot
on

eu
ro

ns
 h

ar
bo

ri
ng

 F
U

S 
an

d 
no

t 
SO

D
1 

m
ut

at
io

ns
 

(3
0)

. E
vo

ke
d 

rh
yt

hm
ic

 p
at

te
rn

s:
 t

he
 r

hy
th

m
ic

 a
ct

iv
it

y 
in

du
ce

d 
by

 a
pp

lic
at

io
n 

of
 N

M
A

 a
nd

 5
-H

T
 is

 a
bs

en
t 

in
 lu

m
ba

r 
(t

ho
ug

h 
it

 in
du

ce
d 

a 
to

ni
c 

ac
ti

vi
ty

) 
bu

t 
no

t 
in

 s
ac

ra
l s

eg
m

en
ts

 (
36

).
 

N
or

ad
re

ne
rg

ic
 s

en
si

ti
vi

ty
 r

el
at

es
 t

o 
th

e 
no

ra
dr

en
er

gi
c-

in
du

ce
d 

am
pl

ifi
ca

ti
on

 o
f l

um
ba

r 
ve

nt
ra

l r
oo

ts
 b

ur
st

 a
m

pl
it

ud
e 

du
ri

ng
 e

vo
ke

d-
fic

ti
ve

 lo
co

m
ot

io
n 

(3
5)

. A
H

P,
 a

ft
er

-h
yp

er
po

la
ri

za
ti

on
; 

A
P,

 a
ct

io
n 

po
te

nt
ia

l; 
C

a2+
, c

al
ci

um
; E

, e
m

br
yo

ni
c 

da
y;

 H
VA

, h
ig

h-
vo

lt
ag

e 
ac

ti
va

te
d;

 iP
SC

, i
nd

uc
ed

 p
lu

ri
po

te
nt

 s
te

m
 c

el
ls

; K
+ ,

 p
ot

as
si

um
; N

a+ ,
 s

od
iu

m
; N

M
A

, N
-m

et
hy

l-
D

-,
 L

-a
sp

ar
ta

te
; 

P,
 p

os
tn

at
al

 d
ay

; R
M

P,
 r

es
ti

ng
 m

em
br

an
e 

po
te

nt
ia

l. 



Electrophysiological Defects of ALS motoneurons 61

postnatal spinal cord slices. These discrepancies could be because the studies 
used different genetic models and controls (SOD1G85R and SOD1G93A mice with 
non-transgenic controls (19) and transgenic mice expressing the wildtype form of 
human SOD1 as controls (20)) and performed recordings at different ages (from 
P0 to P6 (20) and from P6 to P10 (19)). However, both isolated embryonic 
SOD1G93A-expressing motoneurons (21) and those in slice preparation (20) con-
sistently exhibit an increased rate of repolarization compared to controls. 

Analysis of firing frequency-current intensity relationships reveals a common 
difference between ALS and control motoneurons (Table 1). AP frequency is 
increased in ALS embryonic motoneurons in culture (21–24), embryonic spinal 
cord preparation (25), postnatal spinal cord, and brainstem slices (23, 26), as well 
as in human motoneurons derived from induced pluripotent stem cells (iPSCs) 
obtained from patients with ALS (27, 28), relative to controls. A closer examina-
tion of the studies that show variations in this trend toward an increased AP fre-
quency reveals the developmental dynamics that motoneurons are subject to and 
that can be altered by the presence of ALS-causing mutations. Indeed, spinal 
motoneurons from P6–P10 spinal cord slices or preparations show decreased fir-
ing frequency compared with wildtype, although by age, the gain is lower in moto-
neurons from P6–P7 transgenic mice and unchanged in motoneurons from older 
P8–10 transgenic mice versus those from wildtype mice (29). A broader study in 
spinal cord slices from P0 to P12 mice showed an overall unchanged frequency-
current relationship (20). The maturation of iPSC-derived motoneurons and their 
progressive acquisition of electrical properties over time in culture also illustrates 
this differential susceptibility to ALS-causing mutations with respect to motoneu-
ron excitability. A phenotypic switch from early hyperexcitability to late hypoexcit-
ability observed in ALS patient iPSC-derived motoneurons (27, 30) explains the 
previously reported differences in the firing response of motoneurons (28, 31).

ALS motoneurons show other aberrant properties; elevated persistent sodium 
(Na+) and calcium (Ca2+) currents are consistently encountered in different exper-
imental conditions (20, 22, 24, 26). Persistent Na+ and Ca2+ currents that are 
resistant to inactivation by depolarization play an important role in spike initia-
tion, amplification of synaptic inputs, and increasing firing rate (32, 33). It is 
noteworthy that Riluzole decreases persistent Na+ currents in SOD1G93A motoneu-
rons and results in reduced excitability (24). Defects in inhibitory synaptic prop-
erties are also prominent early defects and are detailed in the next sections.

Analysis of chemically evoked locomotor outputs (rhythmic activity) that emerge 
from embryonic lumbar spinal cords revealed a slower rhythm period in SOD1G93A 
versus wildtype spinal cords (34). Interestingly, this N-methyl-D-, L-aspartate 
(NMA)-, and serotonin (5-HT)-evoked locomotor-like slower rhythm period is not 
observed in SOD1G93A postnatal spinal cord preparations. However, SOD1G93A post-
natal spinal networks display increased sensitivity to noradrenaline (NA)-induced 
enhancement of burst amplitude (35). Surprisingly, in SOD1G85R P3-P6 mice, the 
rhythmic motor activity evoked by addition of NMA/5-HT was not observed in 
 lumbar roots, whereas rhythmic patterns were observed in sacral roots and were 
similar to those observed in the sacral roots of wildtype controls (36). In terms of 
spontaneous rhythmic activity, motor output is similar in SOD1G85R and wildtype 
postnatal spinal cords, while a longer burst duration is observed in SOD1G93A spinal 
cords (36, 37). Interestingly, behavior analysis of postnatal ALS mice revealed early 
and transient defects in locomotor capacities (26, 36).
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Discrepancies exist between different studies, which could be attributable to 
the use of different genetic models, recording approaches, and conditions, and/or 
to an effect of the experiment time window. However, altogether this evidence 
highlights altered motoneuron excitability, inhibitory imbalance, and changes in 
spinal locomotor networks as salient traits of the earliest origins of the pathology 
described to date.

Intrinsic features of adult motoneurons in ALS experimental models

To date, only three studies have reported the electrophysiological properties of 
adult motoneurons in ALS mouse models. In the first, whole-cell patch-clamp 
recordings were performed in ventral horn slices of 2.5-month-old transgenic 
mice that express green fluorescent protein (GFP) under the control of the choline 
acetyltransferase (ChAT) promoter. Based on 11 passive and active intrinsic prop-
erties of 42 lumbar motoneurons, the authors performed 11-dimensional cluster 
analysis from which they defined four clusters of motoneurons with similar prop-
erties (38). Table 2 displays the main electrophysiological characteristics. 

TABLE 2 Electrophysiological characteristics of 
motoneuron clusters in adult mice

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Passive

RMP (mV) –70.3 –68.8 –74.2 –70.6

Input Resistance (mOhm) 95.4 73.4 48.0 43.8

Membrane time constant 
(ms)

8.9 6.9 4.9 2.2

SAG ratio
(h current)

18.9 11.0 18.2 3.7

Active (500 ms square pulse)

FIF (Hz) Instantaneous 
firing, beginning of the 
pulse

45.9 164.8 
(doublet 
action 

potentials)

340.6 424.0

SSF (Hz)
Steady-state firing end of 

the pulse

31.9 50.3 74.6 147.7

Muscle innervation

Muscle Soleus Soleus Tibialis 
Anterior

Tibialis Anterior

Fiber type Slow twitch 
fiber

Slow twitch 
fiber

Fast twitch 
fiber

Fast twitch fiber

Motoneuron subtypes were defined using cluster analysis and functional identity was achieved with retrograde 
labeling of known muscle types (38). Soleus: slow-twitch fiber type and Tibialis anterior: fast-twitch fiber type. 
RMP, resting membrane potential; FIF, firing frequency; SSF, steady-state firing.
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Retrograde labeling of motoneurons from slow-twitch muscle (Soleus) and fast-
twitch muscle (Tibialis anterior) demonstrated that clusters 1 and 2 are represen-
tative of ALS-resistant slow motoneurons, while clusters 3 and 4 are representative 
of ALS-vulnerable fast motoneurons. The high input resistance of clusters 1 and 2 
is consistent with the high excitability relative to the threshold recruitment of 
slow motoneurons. In this study, spinal cord slices were prepared from 2–3-month-
old (asymptomatic) and ~4-month-old (symptomatic) SOD1G85R-YFP transgenic 
mice (expressing mutant SOD1 fused with yellow fluorescent protein) to assess 
motoneuron electrophysiology both before and after the development of clinical 
signs. At 2–3 months, all four clusters were present in the mutant motoneurons, 
and their electrophysiological properties were similar to wildtype, except that in 
cluster 4, the RMP was hyperpolarized by 6 mV in mutant versus wildtype moto-
neurons. At 4 months, however, there was a decrease in the probability of record-
ing mutant motoneurons from clusters 3 and 4, suggesting a loss of these 
populations. Interestingly, there was also a tendency toward hyperpolarization of 
the RMP of those motoneurons in clusters 1 and 2. This study suggests that RMP 
hyperpolarization could be a function of the pathogenic process in ALS mice. This 
observation supports the possibility that hypoexcitability arises from an increase 
in threshold current following RMP hyperpolarization.

In a study by Delestree et al., in vivo recordings in the sacrocaudal spinal cords 
of SOD1G93A mice and their non-transgenic littermates from 34 to 82 days (pres-
ymptomatic to disease onset) allowed longitudinal analysis of motoneuron excit-
ability during ALS progression in this ALS model (39). Intracellular recordings 
were performed on motoneurons that were identified by the antidromic APs 
observed in response to electrical stimulation of their axon in the sciatic nerve. In 
this study, no attempt was made to analyze according to clusters and so recorded 
values were distributed over a large range. For example, the recruitment current 
varied from 1 to 13 nA and the input conductance from 0.1 to 0.8 µS. In line with 
initial reports in cat motoneurons (40), the recruitment current highly correlated 
with the input conductance: the larger the input conductance, the higher the 
recruitment current. SOD1G93A motoneurons behaved similarly to wildtype moto-
neurons, except that the mean input conductance was increased, which should 
induce increased excitability. As the mean recruitment threshold was not modified 
and no change in RMP occurred in either genotype, this expected hyperexcitabil-
ity was probably compensated. As mentioned previously, an increase in persistent 
Na+ current has been demonstrated in neonate mutant motoneurons; these results 
suggest that this increase could persist in the adult state. Remarkably, a greater 
proportion of mutant than wildtype motoneurons lost their ability to fire. The 
motoneurons that were unable to produce sustained firing were distributed along 
the full range of input conductance in SOD1-mutant mice, whereas in wildtype 
mice they were restricted to those with the highest input conductance. This study 
is in agreement with that of Hadzipasic et al.––it appears that in adult mice, 
pathogenic SOD1 mutations lead to motoneuron hypoexcitability before muscle 
denervation (38). 

In contrast to the above study, Jensen et al. showed that adult motoneurons in 
SOD1G93A mice have an increased excitability attributed to a lower rheobase, 
higher input–output gains, and increased activation of persistent inward currents 
(41). Therefore, in vivo recordings in adult ALS mouse models lead to conflicting 
results concerning intrinsic electrical properties, which is presently attributed to 
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differences in experimental protocols. In any case, in vivo studies in ALS mice 
suggest that high electrical activity promotes endoplasmic reticulum stress, a 
marker of disease (42), while an increase in the recruitment threshold (i.e., a 
decrease in excitability) slows down disease onset and protects against muscle 
denervation (43). Therefore, the hypothesis that changes in motoneuron inputs 
could be a major factor in their vulnerability requires further evaluation.

ALS-ASSOCIATED INHIBITORY TRANSMISSION DEFECTS

Neuronal circuits called central pattern generators coordinate locomotion and 
control skilled movements. These neuronal networks comprise different cell 
types, such as motoneurons, interneurons, astrocytes, and microglial cells. Most 
interneurons use GABA or glycine as neurotransmitters and thus present an 
inhibitory phenotype. These interneurons are also the most abundant neurons in 
the spinal cord and play a major role in the regulation of neuronal excitability 
(44, 45). 

GABAergic and glycinergic transmission

Among the numerous types of interneurons identified, different classes of inhibi-
tory interneurons have been defined based on the expression of transcription 
 factors. Among the V0 lineage made up of commissural interneurons projecting 
ipsilaterally or contralaterally (46, 47), inhibitory V0d interneurons participate in 
left-right alternation (48). The V1 interneuron population, including Renshaw 
cells and Ia inhibitory interneurons, project rostrally and ipsilaterally on moto-
neurons and reciprocal inhibitory neurons (49, 50). V2b inhibitory interneurons 
project ipsilaterally and caudally. Both V1 and V2b interneurons independently 
participate in alternation of extensor and flexor muscles (51). Neuronal activity is 
controlled by the balance between excitatory and inhibitory neurotransmission. 
While motoneuron pathology plays a large role in ALS pathogenesis, accumulat-
ing evidence highlights a relevant role for these inhibitory interneurons in the 
regulation of motoneuron excitability that might contribute to motoneuron 
pathology. 

To date, mainly pharmacological approaches have been used to investigate the 
role of inhibitory neurotransmission in the control of motoneuron excitability. 
Both acute and chronic infusion of bicuculline (a GABAA receptor blocker) 
 generates a dose-dependent and temporary muscular hyperexcitability, motor 
deficits, and loss of motoneurons, showing that inhibitory GABAergic blockade 
can generate hyperexcitability of the intraspinal neuronal circuits and motoneu-
ron degeneration (52). In addition, increased motoneuron loss and total paralysis 
was observed when 4-amynopyridine or a low dose of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid was added (52, 53), suggesting a close func-
tional link between glutamatergic transmission and GABAergic circuits in the 
regulation of motoneuron excitability. Considering that the use of strychnine 
(a glycine receptor blocker) has no significant effect and that glycinergic neuro-
transmission is mainly intersegmental (54), the GABAergic modulatory role 
appears to be intrasegmental, in line with evidence that ipsilateral flexor–extensor 
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alternations are governed by GABAergic neurons directly affecting motoneuron 
activity within each spinal segment. 

Postmortem histological studies of ALS tissues have mainly described a 
decrease in inhibitory GABAergic and glycinergic interneurons. A layer-specific 
reduction of calbindin (CB)+ neurons has been shown in cortical layers V and VI 
and in the ventral horn of spinal cords of patients with ALS (55–58). Analysis of 
the motor cortex of patients with ALS has also revealed a trend toward reduced 
calretinin (CR)+ cells and a reduction in parvalbumin (PV)+ cells (55, 59). Results 
from other studies also indicate that there are alterations in GABA homeostasis and 
transmission in cortical and spinal ALS inhibitory neurons. The motor cortices of 
patients with ALS exhibit a downregulation and an increase in the mRNA levels of 
the α1-subunit and the β1-subunit of the GABA receptor, respectively, versus con-
trol motor cortices, which could indicate altered receptor function (60). This cor-
relates with the reduced binding of flumazenil (an α1-selective benzodiazepine 
antagonist) observed in positron emission tomography (PET) scanner studies (61) 
and the decrease in GABA levels observed by proton magnetic resonance spectros-
copy (62) in the cortices of patients with ALS compared with controls.

As in humans, a reduction in CR+ cells has been observed in the cortex, hip-
pocampus (63), and the spinal cord (64) of SOD1G93A mice. Morrison et al. 
described a decrease in the number of interneurons in the spinal cord of SOD1G86R 
transgenic mice at early symptomatic stages versus age-matched control mice, 
with a parallel of onset motoneuron degeneration (65). Interestingly, an early 
increase in the population of PV+ interneurons, observed in the motor and somato-
sensory cortices of ALS mice, could suggest that a transient increase in inhibitory 
neurotransmission acts as a compensatory mechanism (66).

Other approaches, such as high-resolution magnetic resonance spectroscopy, 
have revealed a decrease in GABAA receptors in SOD1G93A transgenic mice versus 
controls even at presymptomatic stages (67). Finally, gliosomes isolated from the 
spinal cord of presymptomatic ALS mice exhibit increased expression of the GABA 
transporter (GAT1) along with a reduction in GABA release versus gliosomes from 
control mice (68).

Electrophysiological whole-cell patch-clamp recordings in brainstem slices 
from postnatal SOD1G93A mice revealed an enhanced frequency of inhibitory 
transmission through an increased amplitude and frequency of miniature inhibi-
tory postsynaptic currents (mIPSCs) mediated by GABA in superior colliculus 
interneurons (26). Whole-cell patch-clamp recordings of cultured glutamate 
decarboxylase Gad67-GFP-expressing interneurons from embryonic SOD1G93A 
mice revealed a significant decrease in the peak outward current and intrinsic 
hypoexcitability compared with wildtype Gad67-GFP interneurons (69), which 
could contribute to the attenuated inhibitory function observed in the disease. 
These results suggest early perturbation of inhibitory neuron populations but do 
not establish whether synaptic excitability alters to compensate for abnormal fir-
ing or whether this is a cause or consequence of perturbed excitatory neuron 
excitability in the disease (69). Interestingly, subtype-specific investigations have 
discovered that the largest PV+ interneuron population in the cortex exhibits simi-
lar excitability in wildtype and presymptomatic SOD1G93A mice but that the popu-
lation is hyperexcitable in symptomatic SOD1G93A mice (70). Interestingly, 
SOD1G93A PV+ neurons were found to be more hyperexcitable neonatally than 
presymptomatically, suggesting that compensatory mechanisms take place at 
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some stage of the disease. Electromyography performed in end-stage TDP-43A315T 
mice revealed fibrillation potentials and fasciculations (71). mIPSCs and evoked 
inhibitory postsynaptic currents (eIPSCs) were significantly reduced in layer V 
pyramidal neurons of 3-week-old TDP-43A315T mice versus those of 3-week-old 
wildtype mice. These neurons also exhibited hyperexcitability that was abolished 
by picrotoxin (a GABAA receptor blocker), suggesting that impairments in 
GABAergic signaling contribute to cortical hyperexcitability (72). It was subse-
quently proposed that hyperactive somatostatin interneurons can inhibit PV+ 
interneurons, inducing a disinhibition of cortical motoneurons (72), although 
there is yet no convincing evidence showing direct interactions between these 
interneurons in the motor cortex.

Nieto-Gonzales et al. (73) also demonstrated in the wobbler mouse model 
(74), through electrophysiological measurements of current threshold for input 
resistance and AP in the presence of picrotoxin, that cortical hyperexcitability 
could be related to a decrease in tonic GABAergic inhibition, which in turn was 
related to a reduction in GABAA receptor-mediated inhibitory currents in layer V 
pyramidal neurons of the motor cortex.

Electrophysiological studies performed in spinal cords revealed more discrep-
ancies in impaired inhibition transmission: no significant differences in GABAergic 
mIPSCs and GABAergic currents were observed between SOD1G93A and control 
spinal cord cultured motoneurons (75, 76). However, GABAA receptors had 
higher affinity and lower desensitization levels, and α1 subunit expression level 
were doubled in SOD1G93A motoneurons. These differences could be the result of 
an adaptive process in response to reduced glycinergic inhibition but could also 
contribute to excitotoxic motoneuron death (75).

A more recent electrophysiological study also revealed impaired chloride 
homeostasis and a subsequent induction of a more depolarized reversal potential 
for GABAA receptors in SOD1G93A embryonic motoneurons versus wildtype moto-
neurons (34). Also observed was a reduction in the frequency of inhibitory syn-
aptic inputs in SOD1G93A motoneurons, with less frequent and smaller amplitude 
mIPSCs. In addition, in SOD1G93A motoneurons, inhibitory postsynaptic currents 
exhibited slower decay time than those in wildtype motoneurons, which corre-
lated with a higher intracellular chloride concentration. Computer simulations 
projected that this slower relaxation of synaptic inhibitory events could, at the 
prenatal stage, act as a compensatory mechanism to strengthen GABA/glycine 
inhibition when EGABAAR is more depolarized in order to maintain well-coordi-
nated, although slightly slower, locomotor activity (34). These results also rein-
force the hypothesis that very early inhibitory dysfunction may initiate pathogenesis 
in ALS motoneurons (77, 78) (Table 3).

Looking more specifically at glycine transmission, in vitro binding assays dem-
onstrated reduced binding of strychnine to glycine receptors in the ventral horn 
of human ALS spinal cord versus controls (79, 80). Lumbar ventral and dorsal 
horns of patients with ALS were also found to exhibit significantly reduced gly-
cine levels (81). Inhibitory synaptic changes, with reduced binding of strychnine 
to glycine receptors and a reduction in the inhibitory/excitatory synapse ratio of 
hypoglossal motoneurons, can be observed from the early symptomatic stages in 
SOD1G93A transgenic mice (82). These changes may also contribute to motoneu-
ron degeneration through both an increase in excitatory synapses and a decrease 
in inhibitory contacts.
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A progressive and presymptomatic loss of glycinergic synapses on lumbar 
motoneurons and of CB+ cells has been observed in SOD1G93A mice (83). A decrease 
in glycine transporter 2 (GlyT2) and GAD65/67 expression has also been observed 
in the ventral horn of symptomatic SOD1G93A mice (64). Cell culture models 
also display a decrease in postsynaptic glycine receptor expression (76, 84).  
Electrophysiological whole-cell patch-clamp recordings of spinal cord  motoneurons 
revealed an early and specific decrease in the densities of spontaneous glycinergic 
IPSCs and glycine-induced currents in large-sized SOD1G93A motoneurons 
 compared with wildtype motoneurons (84). A similar decrease in glycinergic 
 currents has been described in a mutant SOD1 zebrafish model;  glycinergic 
 neurotransmission is impaired in spinal motoneurons from mutant SOD1 zebraf-
ish. This decrease has been shown to precede the onset of pathophysiological 
defects in motoneurons, suggesting that motoneuron hyperexcitability may be 
associated with their loss, or the loss of the recurrent inhibition (85).

Recurrent and cortical inhibition 

Motoneurons and Renshaw cells form a recurrent inhibitory circuit in order to 
adjust the motor output. Renshaw cells were first identified in cats by their high-
frequency discharge in response to antidromic motor axon APs (86) and are 
located in the most ventral regions of laminae VII and IX of the spinal cord (87). 
They belong to the V1 interneuron subclass and can be identified by their 
medium to large size, expression of biochemical markers such as GlyT2, CB, and 
PV, location, and electrophysiological properties such as a high postsynaptic 
 sensitivity to acetylcholine and large glycine- and GABA-evoked currents (88). 
Their inhibitory action is mediated by both GABA and glycinergic synapses, 
although synaptic boutons immunoreactive to glycine alone are more numerous 
than boutons that are immunoreactive to both GABA and glycine (89). Since 
Renshaw cells release both GABA and glycine, the recurrent inhibition they 
induce exerts a longer inhibitory synaptic action than the inhibition induced by 
Ia interneurons, in which neurotransmission is more phasic and solely glyciner-
gic (90, 91). Renshaw cells are the only interneurons that receive direct excit-
atory synaptic inputs from motoneurons and, in turn, exert inhibitory feedback 
on them, known as recurrent inhibition (92). However, inhibitory synapses of 
Renshaw cells are located on dendrites rather than on the cell body (93) and the 
effectiveness of recurrent inhibition at reducing the motoneuron firing rate is 
limited  (94). This is in keeping with the small amplitude of the postsynaptic 
inhibitory potential or current generated by Renshaw cells (95). In contrast, the 
synapses of Ia inhibitory interneurons are close to the motoneuron soma and 
have a more significant impact in counteracting the excitatory input arriving in 
the dendrites. Thus, Renshaw cells and Ia interneurons present distinct synaptic 
connectivity that serves different functions. Individual Renshaw cells receive 
inputs from  particular motor pools and spread their inhibitory output to the 
same motoneurons, either directly or through inhibition of Ia inhibitory neurons 
mediating reciprocal inhibition of antagonistic muscles (flexor and extensor 
alternation activity), to γ-motoneurons controlling muscle spindle length, and to 
other Renshaw cells (88). Thus, recurrent inhibition is primarily generated by 
input from motor axon collaterals. However, it may also involve convergent sig-
nals from corticospinal origins (96, 97).
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In humans, cortical excitability can be investigated using noninvasive proce-
dures such as transcranial magnetic stimulation (TMS) or the nerve excitability 
test (NET). TMS consists of applying a local time-varying magnetic field that 
depolarizes neurons beyond their AP firing threshold and stimulates the primary 
motor cortex. The resulting evoked muscle response is then recorded using an 
electromyogram. The NET involves directly applying an electrical stimulus to a 
desired nerve and measuring the evoked response at the appropriate muscle. To 
differentiate between excitatory and inhibitory circuitries, different TMS stimula-
tion protocols have been developed. To assess motor cortex excitability, this 
 technique is associated with the measurement of motor evoked potentials (MEP), 
recorded from a contralateral innervated muscle (98), and an increased excitabil-
ity which is detected following a conditioning stimulus (referred to as ICF). TMS 
procedures have shown that a transcranial subthreshold stimulus, activating low-
threshold inhibitory circuits and thus increasing the stimulus threshold to elicit 
an evoked response (99), can suppress the response to a later suprathreshold 
stimulus (100). This inhibitory phenomenon, attributed to GABA-secreting inhib-
itory cor tical interneurons via GABAA receptors, is referred to as short intracortical 
inhibition (SICI) (101, 102).

Electroneurography studies revealed marked variability in the hyperexcitabil-
ity index scores of patients with ALS. The inhibitory effects of TMS on the corti-
cospinal output of patients with ALS demonstrated that the threshold to elicit an 
MEP was significantly reduced after inhibitory stimuli (103–107). This was 
accompanied by a reduction in intracortical inhibition (103, 107–114), and lower 
and less effective SICI in ALS patients with limb-onset disease, suggesting either a 
dysfunction or a loss of inhibitory interneurons (107, 113, 115–120). However, it 
must be noted that at the cellular level, electrophysiological alterations, such as 
altera tions of voltage-gated Na+ and K+ channels that affect motoneuron AP 
threshold (24, 121), may also contribute to reduced SICI in ALS.

TMS studies in humans have also demonstrated ICF (111–114, 122), and 
Vucic et al. reported that the measured reduction in SICI represented degenera-
tion of inhibitory cortical circuits combined with hyperexcitation of high- 
threshold excitatory pathways (123). More recent work has shown that reduced 
and altered SICI affects motor cortical circuits in ALS; the study also showed that 
combining two parameters, short-interval ICF and SICI, increases the utility of 
SICI for identifying patients with ALS (124). Overall, these results demonstrate 
that in ALS the imbalance between excitatory and inhibitory circuits in the M1 
cortex is based on a combination of increased excitability and decreased inhibi-
tion (125). One study reported more normal SICI values (126) and also demon-
strated reduced late intracortical inhibition, attributed to GABAB receptors, in 
patients with ALS compared with control individuals (113, 126). Another showed 
more frequent and stronger inhibitory responses in cortices of patients with ALS 
versus those of control patients (127).

More evidence for cortical inhibition dysfunction came from analysis of the 
duration of the cortical silent period (CSP). Indeed, CSP is thought to reflect both 
inhibition of anterior horn cells from the spinal cord and cortical influences 
through GABAB recep tors (128–132). Thus, the observed reduction in CSP 
 duration, predominantly observed in patients with bulbar-onset disease (133), is 
likely to be associated with disinhibition of anterior horn cells (134, 135) and 
dysfunction of cortical inhibitory interneurons acting via GABAB receptors (120).
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The late manifesta tion of overt cortical hyperexcitability (136) could be 
explained by the incredible capacity of inhibitory circuitry for compensation 
(137–140) and the high levels of brain reorganization observed in patients with 
ALS (141, 142). Indeed, these mechanisms of plasticity may slow disease 
 progression. This hypothesis is supported by the observation that patients with 
preserved intracortical inhibitory circuitry dis play a slower disease progression 
(143). However, it remains unclear how interneuronal capacity may selec tively 
fail in patients with ALS over time. As a loss of GABAergic populations is reported 
during aging in both human and murine studies (144, 145) and is associated with 
a decline in inhibition in a number of cortical regions (144, 146–149), it is also 
possible that although inhibitory circuitry can compensate for initial insults, an 
age-related decline of inhibition leads to fail ure of further compensation.

Overall, these observations demonstrate that loss of Renshaw cell function 
could be the result of degeneration of the corticospinal fibers directed to these 
cells and that the loss of cortical inhibitory influence, in association with ion 
channel alterations, may participate in increased motor network excitability (125). 
A better understanding and characterization of subtypes, inputs and outputs, 
morphology, and electrophysiological properties of the different cortical interneu-
rons would be helpful to better dissect the mechanisms underlying cortical hyper-
excitability in ALS.

Renshaw cell circuitry can be studied by combining TMS with the paired 
H-reflex technique, which produces a response whose amplitude inversely cor-
relates with activity in recurrent inhibitory pathways (150, 151). Raynor et al. 
presented the first evidence for Renshaw cell impairment in patients with ALS 
(135), reporting an abnormal reduction in recurrent inhibition in patients with 
ALS compared with control individuals. The collision technique, used in motor 
axons, can be used to test recurrent inhibition by creating a relatively homoge-
neous population of motoneurons which are under the effect of both Renshaw 
inhibitory inputs and post-activation AHP that regulates the AP firing rate of the 
motoneurons themselves. One of the prerequisites therefore for the correct appli-
cation of the paired H-reflex method is to produce results whereby the depression 
of motoneuron activity by Renshaw cells overcomes the depression produced by 
AHP (152, 153). Unfortunately, in this work (135), the paired H-reflex methodol-
ogy was not fully implemented (153), and these findings were insufficient to con-
clude if it was recurrent inhibition, AHP, or both that was decreased. Indeed, even 
though no changes in AHP have been observed in motoneurons from the SOD1G93A 
and the SOD1G85R mouse models (23, 29), the shorter than normal AHP duration 
observed in earlier stages of ALS (154) could explain the results obtained by 
Raynor et al. (135).

In another study, Shefner and Logigian investigated the mixed nerve silent 
period (MNSP), the period of motor inhibition observed when the mixed nerve 
innervating a voluntary activated muscle is electrically stimulated, in patients with 
ALS and control individuals (155). Patients with ALS exhibited a longer MNSP 
duration, as well as less complete inhibition in the middle phases of the period, 
which may also reflect abnormalities in Renshaw cell function. However, the stim-
ulated nerve fibers used in this study originated from the intrinsic muscles of the 
hand, which are devoid of recurrent inhibition (156).

A more recent study performed by Özyurt et al. compared spinal recurrent 
inhibition and postactivation depression (PAD) on the soleus muscle in 
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lumbar-affected and nonlumbar-affected ALS patients (157). PAD is another spi-
nal circuit with an effective presynaptic network that tones down the output of 
the primary afferents on motoneurons. As in the previous studies, this work 
demonstrated a reduced duration of recurrent inhibition and reduced PAD of 
the H-reflex in patients with ALS compared with controls, which may lead to 
excessive excitation of motoneurons. Unfortunately, this work could not provide 
evidence of whether it is primarily Renshaw cells or motoneurons that are 
impaired.

Finally, it has been shown that both Renshaw cells and V1-derived Ia inhibi-
tory interneurons, mediating recurrent and reciprocal inhibition of motoneurons, 
can be excited by V0c cholinergic interneurons to inhibit ipsilateral motoneuron 
excitability (158). Interestingly, early reduction of ChAT content in the presynap-
tic boutons of V0c interneurons on motoneuron somas and Renshaw cells has 
been observed in the SOD1G93A mouse model (159). Similarly, it has been reported 
that cholinergic afferents from motoneurons to Renshaw cells are lost at early 
stages of ALS, by retraction of the motoneuron collateral (160). Inhibitory bou-
tons from Renshaw cells on motoneurons and the number of Renshaw cells were 
unaffected at the same stage. In both studies, these changes occurred long before 
markers of motoneuron degeneration appeared. Therefore, according to these 
findings, cholinergic dysfunction can also trigger hyperexcitation and neurode-
generation processes in the spinal circuits through decreased excitatory action on 
inhibitory neurons.

Even though there is accumulating evidence to suggest that the inhibitory 
circuitry is affected and that interneuron populations are lost in ALS, controver-
sies still exist about the evolution of this altered inhibition. Understanding these 
processes is of great interest considering that motoneuron hyperexcitability is 
observed at both the embryonic and presymptomatic stages in ALS models and 
patients (25, 26, 103) and that interneuron development is an activity-depend ent 
process (161–164). Indeed, attenuating the activity of specific interneu ron popu-
lations affects their migration and morphology during development (165) and 
their inhibitory synapse formation on excitatory cells (162, 166). In particular, 
the complexity of inhibitory innervation field is activity dependent. Thus, in ALS, 
where hyperexcitability is an early phe nomenon (25, 167), aberrant inputs may 
be created at the motoneuron presynapse long before disease onset (168). 

Two hypotheses have been proposed to explain how Renshaw cell alterations 
may lead to a hyperexcitable state and eventual degeneration of motoneurons. 
The first hypothesis postulates that the hyperexcitability is caused by loss of recur-
rent Renshaw cell-mediated inhibition and is based on electrophysiological 
findings suggesting an impairment of Renshaw cells in patients with ALS 
(135, 155). It is reinforced by the progressive loss of glycinergic boutons through-
out the soma of the motoneurons and loss of CB+ cells observed in SOD1G93A mice 
at an early symptomatic stage, before motoneuron degeneration. Since GABAergic 
terminals are only affected at the final stage, these changes can be assumed to be 
due to Renshaw cell loss (83). Another study reported early loss of Renshaw 
cells and revealed that lithium protects against Renshaw cell loss and delays 
 disease progression, leading the authors to suggest that Renshaw cell loss may be 
the event that makes motoneurons more susceptible to glutamatergic toxicity 
in  ALS (169). In addition, spinal motoneurons from SOD1-mutant zebrafish 
exhibited impaired glycinergic neurotransmission that preceded the onset of 
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pathophysiological defects in motoneurons, thus also suggesting that motoneuron 
hyperexcitability may be associated with the loss of these cells, or the loss of the 
mediated recurrent inhibition (85).

The second hypothesis proposes that the recurrent inhibitory circuit is altered 
ahead of motoneuron hyperexcitability and neurodegeneration but that this is not 
a consequence of Renshaw cell loss. Indeed, some studies suggest that the tempo-
ral onset of degeneration in motoneurons and interneurons may occur in parallel 
in patients with ALS (58) and in SOD1G86R mice (65, 170). In agreement with the 
latter hypothesis is the observation that there is an early increase in the population 
of PV+ interneurons in the motor and somatosensory cortex of SOD1G93A mice, 
which suggests that a transient increase in inhibitory neurotransmission could act 
as a compensatory mechanism to rescue motoneurons from glutamate excitotox-
icity (66). Reinforcing this, activation of Renshaw cells has a poor effect on moto-
neuron soma activity (171) and interneurons are preserved in the symptomatic 
stage, indicating that progression of motoneuron degeneration is independent of 
Renshaw cell loss (160). In the same model, immunoreactivity experiments per-
formed on vesicular inhibitory amino acid transporters (VIAATs) have shown a 
significantly reduced VIAAT expression in the ventral and dorsal horn neuropil, 
only at late stages, indicating that loss of inhibitory input (mostly Renshaw cells) 
does not precede but rather follows motoneuron death (172). In line with this, the 
finding that loss of inhibitory spinal interneurons occurs after loss of motoneu-
rons (64) suggests that motoneuron degeneration may also trigger interneuronal 
pathology. Finally, as previously mentioned, V1 inhibitory neurons are thought to 
play a key role in modulating motor output, in part through recurrent and recip-
rocal inhibition. A more recent study on the fate of these neurons in the ventral 
spinal cord of SOD1G93A mice (173) revealed increased V1 synaptic contacts with 
motoneuron cell bodies at an early stage of disease, followed by a 50% loss of V1 
interneurons at a later stage. Since this loss is delayed compared with motoneu-
rons and V2a excitatory neurons, this also supports the hypothesis that upregula-
tion of inhibition is an early compensatory mechanism, followed by a substantial 
loss of V1 interneurons later in the disease (173).

These results may explain how Renshaw cell alterations may lead to hyperex-
citability and eventually to motoneuron degeneration. However, there is still a 
debate about whether it is the selective loss of inhibitory interneuron regulation 
of motoneuron function, loss of inhibitory interneurons, or a combination of 
both, that contributes to motoneuron degeneration in ALS.

Therapeutic approaches 

All these findings suggest that early impairment of GABAergic and glycinergic 
signaling occurs in ALS patients and animal models. As excitatory and inhibitory 
regulation are crucially linked from the presymptomatic stage of the disease, alter-
ations in inhibitory circuitry may involve dynamic changes and determine the 
susceptibility and vulner ability of motoneurons. Therefore, new possible pharma-
cological neuroprotective strategies aiming to restore normal levels of excit ability, 
potentially by preserving the integrity of inhibitory circuits or restoring inhibition 
in the spinal cord, may be appropriate for the treatment of ALS.

Therapeutic approaches using pharmaceutical compounds to target the 
inhibitory system have been successfully used to improve diseases in which 
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excitability and interneuronal alterations are present (174–176). In ALS, as spas-
ticity, fasciculations, and cramps develop, GABA agonists such as diaz epam and 
baclofen are prescribed to treat these features associated with the disease 
(177–179). Diazepam has been shown, using paired TMS, to reverse the hyper-
excitability observed in patients with ALS compared with control individuals 
(115). The GABA analog gabapentin reduced fasciculations (180) with promis-
ing neuro protective effects in a chronic model of glutamate toxicity (181) and 
reached clinical trials. However, later phase trials revealed no beneficial effects 
(182, 183), which could be explained by the fact that despite sharing structural 
similarity with GABA, gabapentin may not directly modu late GABA receptors 
and instead may selectively inhibit voltage-gated Ca2+ channels containing the 
α2δ-1 subunit (184, 185). In SOD1G93A mice, administration of lithium pre-
vented Renshaw cell loss and delayed the onset of symptoms (169, 186). Other 
therapeutic strategies using viral vectors to upregulate the production of GABA 
could also be employed (187).

To maintain physiological GABA concentrations, the use of drugs that 
block GABA uptake and catabolism at the synapse may be considered: 
tiagabine blocks the activity of the GABA transporter GAT1 (188), and vigaba-
trin blocks GABA transaminase and prevents the degradation of GABA (189). 
In addition, bumetanide, a drug that can inhibit the Na–K–Cl cotransporter 
NKCC1 and decreases intracellular chloride concentrations in imma ture 
GABAA receptors (190), and reti gabine, which interacts with the KCNQ2/
KCNQ3 subunits of K+ channels and with GABAA receptors to weakly block 
sodium and calcium channels and thus decrease excit ability (191), may also 
be considered.

In ALS, specific motoneurons are spared, such as the oculomo tor and abdu-
cens populations (192), and gene expression studies have identified striking dif-
ferences in genes responsible for the GABA and glutamate receptor subunits that 
may contribute to differ ential vulnerability. Indeed, in disease-resistant oculomo-
tor neurons, α1, β1, β2, e, γ1, and θ GABAA receptor subunits are upregulated, 
whereas the α1 subunit is consistently reduced in vulnerable spinal and cortical 
motoneurons in patients with ALS (60, 62, 193). In addition, the specific vulner-
ability of ALS-resistant and ALS-vulnerable motoneurons correlates with the sub-
unit composition of GABAA receptors, Gly/GABAA receptor density ratios, and the 
incidence of synaptic versus extrasynaptic GABAA receptors (194, 195). 
Considering that the subunit composition of GABAA receptors deter mines the 
location of the receptor as well as its specific pharmacological and electrophysi-
ological properties, differential GABAA subunit expression will alter GABAergic 
recep tor function (196–198). Thus, considering that an increase in GABAA recep-
tors could generate a better GABAergic influence and protection, the development 
of GABA receptor subtype–selective compounds to counteract reduced inhibitory 
activ ity and modulate inhibition may be another interesting future therapeutic 
approach. 

Finally, neural stem cell transplantation studies have shown strong evidence 
that restoration of the inhibitory drive can affect motoneuron survival (199, 200). 
More specifically, Xu et al. demonstrated that neural stem cells transplanted into 
SOD1G93A mice differentiate into neurons presenting a GABAergic phenotype, 
which form local synapses and positively modify motoneuron survival (201–203), 
suggesting a future possible therapeutic use for these cells.
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ALTERATIONS IN THE MODULATORY TRANSMISSION IN ALS

Neuromodulatory systems complement conventional neurotransmission by influ-
encing neuronal excitability and synaptic efficacy. Abnormalities in this interneu-
ronal signaling, where cholinergic and monoaminergic inputs modulate motor 
output, have been evidenced in ALS mice and patients.

Cholinergic transmission

Cholinergic C-synapses were identified several decades ago, mainly because of 
their unusual morphology. They form punctate large clusters (3–7 µm) primarily 
at the soma and proximal dendrites of α-motoneurons in the trigeminal, facial, 
and hypoglossal motor nuclei in the brainstem, as well as the α-motoneurons in 
the ventral horn of the spinal cord (204). C-bouton synapses originate from a 
small population of cholinergic Pitx2+ interneurons, the V0c spinal neurons, 
found in the lamina X near the central canal (205, 206). Identifying that the V0c 
population forms the C-boutons allowed the in vivo function of these synapses 
to be addressed specifically. This major study revealed that these interneurons 
are involved in high task demands, such as swimming, that recruit the fast fati-
gable (FF) and fast fatigue-resistant (FR) motoneurons (206). Consistent with 
their role in task demand, these interneurons highly express the activity- 
dependent gene c-Fos following locomotion but also following painful sensory 
stimulation (207). 

Interestingly, the motoneurons innervating fast-twitch muscles (those that 
are the first to degenerate in ALS) have a greater number of C-boutons than 
those innervating slow-twitch muscles (208). Moreover, C-boutons are not 
expressed among the motoneurons innervating the oculomotor, trochlear, 
abducens, and dorsal vagus nuclei, or the spinal gamma motoneurons and the 
autonomic motoneurons. Given the correlation between motoneurons without 
these terminals and survival, Ichikawa and Shimizu suggested that C-boutons 
might be involved in the neuron death that occurs in ALS (209). However, there 
is an exception to this correlation; the sphincteric motoneurons in Onuf’s 
nucleus, a neuron type that survives in patients with ALS, are contacted by 
C-type terminals (210).

It is now well established that C-boutons increase the firing rate of motoneu-
rons through a rather well-characterized sequence of cellular events involving 
activation of the postsynaptic muscarinic M2 receptors and inhibition of the Ca2+-
activated K+ current, SK channels (204, 211, 212). In addition, we recently dem-
onstrated that muscarinic stimulation is dependent on motoneuron type, with a 
higher efficacy in the disease-vulnerable FF motoneurons; this further suggests 
that C-boutons may play a specific role in ALS (43).

Functional analysis of the role of C-boutons in ALS mouse models supports 
the hypothesis that the increased excitability mediated by C-boutons delays 
ALS progression, as does inhibition of ER stress (42). In addition, genetically 
silenced C-boutons in ALS mice exacerbates locomotor deficits (213). On the 
other hand, decreasing excitability through C-boutons-associated activity 
reduces motoneuron stress and denervation and thereby maintains muscle 
strength (43).
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Monoaminergic systems

The developmental assembly and function of the locomotor circuits is subject to 
neuromodulation to provide adaptive behaviors (214). The monoaminergic sys-
tem that encompasses NA, 5-HT, and dopamine (DA) has been shown to influ-
ence the rhythmic firing pattern of motoneurons and contribute to the flexibility 
of locomotor functions with premotor inputs and sensory afferents. A reduction 
in descending serotonergic fibers, linked to reduced levels of 5-HT in the spinal 
cord of SOD1G93A mice, has been reported as early as E17.5. 5-HT hyperpolarizes 
EGABAAR through 5-HT2 receptors in embryonic motoneurons; similar intensities 
are observed in wildtype and SOD1G93A mice (215). During postnatal develop-
ment, while the levels of DA, NA, and 5-HT in the lumbar spinal cord increase 
between P1 and P10, only DA is increased in SOD1G93A mice compared with 
wildtype mice, although this difference is mainly due to changes in the dorsal part 
of the spinal cord (35). DA, NA, and 5-HT increase all exerts marked modulatory 
activity, by potentiating fictive locomotion in spinal cord preparations. However, 
NA is the only biogenic amine to differentially enhance motor burst in ALS mice, 
potentially through modulation of excitatory inputs (35). 

In the adult spinal cord, DA levels in patients with ALS were shown to be simi-
lar to those in control individuals; NA levels were found to be increased, as was 
the ratio of 5-HT to its metabolite 5-hydroxyindole-3-acetic (5-HIAA) (216). 
However, another study in patients with ALS documented a loss of dopaminergic 
neurons in the substantia nigra (217), which is consistent with the reduced dopa-
minergic function and nigrostriatal DA deficits observed in patients (218, 219). A 
study in ALS mice showed that reduced numbers of dopaminergic neurons in the 
substantia nigra pars compacta and ventral tegmental area were associated with 
reduced levels of DA (220). PET analysis showed a decrease in the binding of a 
selective 5-HT1A receptor in motor and extramotor regions of the brain in patients 
with ALS versus healthy volunteers (221). Another study reported that 
5-HIAA/5-HT were elevated only in the lateral white matter of the cervical spinal 
cord of patients. A reduction in 5-HT2 receptor binding, but not in the 5-HT1A 
receptor, was also observed in the motor and premotor cortex (222). A more 
recent study revealed a loss of serotonergic neurons in the brainstem and their 
projections in the hippocampus and spinal cord of patients with ALS (223). This 
loss is also found in SOD1G86R mice and correlates with reduced levels of 5-HT in 
the cortex, brainstem, and spinal cord, even at the non-symptomatic stage (223). 
In ALS mice, reduced serotonergic innervation is associated with upregulation of 
the 5-HT2B receptor and development of spasticity, which can be abrogated by 
administration of a 5-HT2B/C receptor antagonist (223, 224). Treatment of 
SOD1G93A neonates with fluoxetine, a selective serotonin reuptake inhibitor that 
acts at presynaptic terminals to increase 5-HT levels, decreased motor perfor-
mance and weight of adult mice, without affecting disease onset (225). Analysis of 
P10 spinal cord slices revealed that 5-HT depolarizes RMP, hyperpolarizes the 
persistent inward current peak and increases motoneuron excitability, despite 
wildtype and SOD1G93A motoneuron showing similar responses (225). Of note, 
treatment of adult ALS mice with fluoxetine has no effect on disease course. This 
underlines the importance of the monoaminergic, and in particular the serotoner-
gic, system during critical stages of development; it will have long-term effects on 
the motor system. Monoaminergic system changes, which have a critical influence 
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on the assembly, maturation, and function of motor circuits, represent a patho-
logical characteristic of ALS that remains largely understudied; these changes are 
therefore also a therapeutic target.

ALS-ASSOCIATED DEFECTS IN EXCITATORY TRANSMISSION

Glutamate is the major excitatory neurotransmitter for lower motoneurons that 
transmits information from upper motoneurons as well as proprioceptive sensory 
neurons. Glutamatergic dysfunction has been recognized as an important contrib-
uting factor to ALS. 

Glutamatergic inputs

In humans, cortical hyperexcitability has been identified as an important patho-
genic mechanism in ALS and is mediated through dysfunction of inhibitory and 
facilitatory intracortical circuits (114). The corticofugal hypothesis proposes 
that cortical hyperexcitability might cause motoneuron degeneration in ALS via 
trans-synaptic glutamate-induced excitotoxicity (226, 227). Decreased intracor-
tical inhibition and cortical hyperexcitability can be seen in patients with SOD1 
gene mutations (112, 228). Moreover, cortical hyperexcitability appears to pre-
cede spinal motoneuron degeneration (103), supporting the dying-forward 
hypothesis that disease progression is mediated through glutamate-induced tox-
icity (229).

ALS mouse models are used to better understand the cellular basis of cortical 
hyperexcitability. In cultured cortical neurons baring the SOD1G93A mutant, hyper-
excitability was attributed to a decrease in the threshold potential and time of the 
first AP and an increase in the firing frequency. This intrinsic hyperexcitability was 
attributed to an increase in the persistent inward Na+ current density (230).

In situ whole-cell patch-clamp recordings of layer V cortical motoneurons in 
presymptomatic P26–31 SOD1G93A mice revealed increased excitability through 
increased frequency of spontaneous excitatory postsynaptic currents (231). This 
was accompanied by an increase in the expression of the vesicular glutamate 
transporter 2. Moreover, compared with controls, SOD1G93A-expressing cortical 
neurons exhibited a higher output gain (slope of the frequency–current relation-
ship) and lower rheobase.

These results have subsequently been mitigated by the observation that all 
neurons in SOD1G93A mice exhibit increased activity (whole-cell recordings in 
brain slices from P90 to P129 versus controls). This result is from a study in which 
corticospinal and corticocortical neurons were identified following injection of 
neuronal tracers at specific sites, and inhibitory GABAergic PV+ neurons were 
identified by use of cells from Gad67-GFP mice (70). Interestingly, the cellular 
mechanisms leading to hyperactivity varied among the different neuronal popula-
tions. Corticospinal neurons exhibited an increase in the output gain, without 
changes in the rheobase, while corticocortical neurons displayed a decrease in 
rheobase and an increase in the output gain. It is well established that the activity 
of layer V pyramidal neurons is strongly inhibited in the perisomatic compart-
ment by PV+ GABAergic interneurons, which represent 40–50% of layer V 
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interneurons (232). It was thus unexpected that, in symptomatic SOD1G93A mice, 
inhibitory PV+ neurons became hyperexcitable, with a decrease in rheobase and a 
leftward shift in their output gain (without change in the maximal frequency of 
firing). However, this study did not address whether there was a partial loss of 
these inhibitory interneurons. This longitudinal analysis of cortical excitability 
highlights that neuronal plasticity occurs during disease progression, beginning 
with hyperexcitability at the neonatal stage, followed by normal excitability and a 
return to hyperexcitability at symptomatic stages of ALS. These results supporting 
an overall hyperexcitability of excitatory and inhibitory cortical neurons were fur-
ther confirmed and suggested to involve compensatory mechanisms occurring all 
along disease progression in SOD1G93A mice (70). It is interesting to note that 
spinal motoneurons also display hyperexcitability at embryonic and neonatal 
stages, which is followed by hypoexcitability in adults without reemergence of 
hyperexcitability. To further investigate the overall effects of neuronal hyperexcit-
ability on the homeostasis of layer V neurons, intracellular Ca2+ levels were 
assessed using two-photon imaging of GCaMP6s-infected neurons (70). The main 
conclusion was that basal levels of intracellular Ca2+ are increased in SOD1-
mutant layer V neurons, supporting a net hyperexcitability and/or an inability to 
maintain Ca2+ homeostasis, a factor that is known to be responsible for neuronal 
toxicity. It should be noted that spinal motoneurons have a poor capacity to buffer 
intracellular Ca2+ and are thus very sensitive to Ca2+-induced toxicity. Consequently, 
the hypoexcitability reported at symptomatic stages could be a compensatory 
mechanism to prevent Ca2+ overload.

Similarly, hyperexcitability of layer V pyramidal neurons in 3-week-old 
TDP-43A315T mice (a mouse model of ALS and frontotemporal dementia with pro-
found cortical pathology) was found to be due to reduced mIPSCs, indicative of a 
reduced GABAergic tone, versus wildtype mice. Consistent with this, PV+ 
GABAergic interneurons of these mice were hypoexcitable; this was due to hyper-
activity of somatostatin interneurons located in the M1 cortex. Interestingly, abla-
tion of somatostatin interneurons restores the PV+ GABAergic inhibition of layer V 
neurons and protects against excitotoxicity induced by L5 neurons (72). A recent 
study in late presymptomatic SOD1G93A mice confirmed the hypoactivity of PV+ 
neurons (233). Altogether, these studies support the idea that different cell types 
contribute to the control of corticospinal layer V neuron activity during ALS 
progression.

In vivo genetic manipulation is now emerging as a technique that can help us 
understand the overall effects of changes in cortical activity on ALS onset and 
progression by allowing modulation of neuronal activity. Chemogenetics–– 
specifically, the chemogenetic tool designer receptors exclusively activated by 
designer drugs (DREADD) (234)––has been used to increase PV+ neuron activity. 
Chronic activation of PV+ interneurons at the presymptomatic stage or at symp-
tom onset delays the cortical neurodegeneration observed at the symptomatic 
P117 stage and delays motor deficits in the SOD1G93A ALS model (233).

In addition, genetic ablation of subcerebral projection neurons, including 
the layer V neurons, has been used to assess the in vivo contribution of the cere-
bral cortex to ALS. This was achieved through ablation of the transcription fac-
tor Fezf2, which is necessary and sufficient to instruct birth and specification of 
 corticospinal neurons and subcerebral projection neurons. Crossing SOD1G86R 
mice with Fezf2−/− mice generates ALS mice entirely lacking both these 
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neuron populations. The loss of subcerebral projection neurons delayed disease 
onset and improved motor function in ALS mice (235).

Proprioceptive system

Proprioception is defined as our sense of body position and movement. We are 
constantly receiving signals from our moving body that allow us to interact with 
the environment and rapidly adapt to changing circumstances. It is largely the 
proprioceptors that tell us about the position and movement of our limbs and 
trunk. The information they provide allows us to bypass obstacles in the dark and 
handle objects without needing to see them (236, 237). Several types of proprio-
ceptors inform us about different aspects of our body shape. 

As an example, in skeletal muscles the spindles associated with the Ia/II affer-
ent fibers encode the muscle length and the velocity of muscle length. These 
muscle spindles also receive γ-motoneuron efferent innervation that regulates the 
tension of the spindle. At the junction between muscle and bone, the Golgi ten-
don organs innervated by Ib afferent neurons encode for muscle strength to con-
trol α-motoneuron activity when the strength of contraction may damage the 
muscle. Consequently, people suffering from major proprioceptive deficits are not 
able to coordinate movements and become unable to move. They must learn how 
to use another sensory modality, usually sight, to provide sensitive feedback of 
movements. 

The preceding sections have illustrated that the pathophysiological processes 
leading to ALS are not circumscribed to motoneuron cell-autonomous features 
but also affect the motor circuitry in which motoneurons are integrated. The pro-
prioceptive system is part of these sensory motor networks and is thought be one 
of the systems involved in the pathophysiology of ALS; it also seems to be part of 
the process of neuronal degeneration (3, 238, 239).

Growing evidence supports the involvement of the somatosensory system in 
patients with ALS. Most studies have demonstrated the presence of sensory symp-
toms that can be associated with sensory neuropathy and loss of large-diameter 
myelinated fibers (240). Interestingly, spinal diffusion tensor imaging coupled 
with electrophysiological measurements revealed sensory defects in 85% of 
patients with ALS who had moderate impairment and no sensory symptoms 
(241). The implications of sensory deficits in the pathophysiology of ALS may 
have been underestimated; this work provides additional evidence of early degen-
eration of sensory pathways in patients with ALS.

ALS mouse models confirm the involvement of peripheral sensory abnormali-
ties; in most, sensory deficiencies occur during early stages of the disease 
(240, 242). Studies in SOD1G93A and TDP-43A315T mice analyzing proprioceptive 
nerve ending in muscles reported that peripheral innervation of spindles by Ia 
and II afferent fibers is diminished in the presymptomatic stages of the disease. 
The sensory neuron somata are unaffected (243, 244), and central synapses are 
affected only late in the disease process. Furthermore, TDP-43A315T mice develop 
sensory abnormalities even in the absence of α-motoneuron axon lesions (244).

In recent years, several investigators have attempted to address whether degen-
eration starts with the spinal motoneurons or in other cells of the sensory motor 
networks. Only two studies have addressed this point through an electrophysiolog-
ical approach. The first was carried out in a Drosophila dSod1G85R knock-in model 
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(245) and used structural and electrophysiological measures to reveal early larvae 
motor deficits. This early reduced locomotion was not due to neuromuscular junc-
tion dysfunction, deficiencies in muscle contraction, or to alterations in motoneu-
ron properties. On the contrary, dysfunction of peripheral sensory feedback 
occurred before any evidence of motoneuron degeneration. These results suggested 
that the proprioceptors could be affected first in ALS and that their dysfunction 
could explain the altered motor activity and could ultimately lead to motoneuron 
degeneration. The second study used the jaw reflex in SOD1G93A mice as a model 
and showed that proprioceptive Ia afferent sensory neurons display electrical 
abnormalities in the postnatal stage at the beginning of the disease process (246). 
Proprioceptive neurons were hypoexcitable and more likely to discharge phasically 
(bursting neurons). Moreover, bursting properties were abnormal and led to an 
irregular burst pattern. In addition, the existence of a Nav1.6 Na+ channel defi-
ciency contributed to the arrhythmic burst discharge. Interestingly, examination of 
other brainstem sensory neurons (tactile, nociceptive, and visual) at 2 weeks of age 
confirmed that changes in excitability had occurred exclusively in proprioceptive 
neurons. The authors concluded that such sensory arrhythmia could lead to a dis-
turbance of reflexes causing the muscle fasciculations that are encountered in ALS.

As the disease progresses, sensory motor network dysfunction occurs in an 
attempt to maintain contractile force for as long as possible, but this ultimately 
leads to excitotoxicity and death of motoneurons. New therapies targeted toward 
sensory motor network dysfunction might therefore positively influence disease 
progression (247, 248).

CONCLUSION

Intrinsic neuronal hyperexcitability in upper and lower motoneurons is the earli-
est pathogenic defect of ALS to have been identified. Whether this is causative, or 
aggravating remains to be definitively established, although identification of caus-
ative genes in ALS rather supports an aggravating role. The hypoexcitability that 
emerges during disease progression could be an adaptive process to protect against 
cell death. A question remains concerning whether the synaptic propagation of 
aberrant activity could arise from the relationship between upper and lower 
motoneurons  ––the so-called forward propagation of excitotoxicity. In vivo studies 
in rodents support a functional correlation between upper and lower motoneu-
rons in disease aggravation (233, 235). However, it should be mentioned that 
unlike in humans, direct cortical-motoneurons synapses disappear in rodents at 
postnatal ages (249). The cortical influence on motoneuron excitability in rodents 
could be more pronounced at early developmental stages, while defects of local 
circuitry in spinal cord could become more predominant during later stages. In 
humans, the corticospinal tract could have an even greater influence in ALS pro-
gression than it does in rodents. Likewise, the higher sensitivity of lower moto-
neurons than upper motoneurons to excitotoxicity could explain their earlier 
death. Therapeutic intervention in circuit dynamic and motoneuron electrophysi-
ological features hold promise of successful therapy for ALS, although it still 
requires improving knowledge of the complex adaptive changes that occur during 
development and adulthood.
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Abstract: Since neurons have long neurites, especially axons, the transport of 
essential mRNAs, and their translation locally in axons, are essential to maintain 
the shape and function of the neurons. The RNA-binding protein TDP-43 (trans-
active response DNA binding protein 43) plays a crucial role in the transport and 
translation of mRNAs in neurons. In amyotrophic lateral sclerosis (ALS) and fron-
totemporal lobar degeneration (FTLD), TDP-43 and other RNA-binding proteins 
are mis-localized and abnormally deposited in neurons. Mutations of genes 
 regulating these proteins have been identified in clinical cases. Impaired mRNA 
transport system may be a contributing factor of neurodegeneration in ALS/FTLD. 
In this chapter, we outline the role of RNA-binding proteins, with emphasis on 
TDP-43, in axonal transport and local translation of mRNAs in ALS/FTLD.

Keywords: amyotrophic lateral sclerosis; axonal transport; local translation; 
 ribosomal protein; TDP-43
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which disor-
ders of motor neurons cause paralysis and atrophy of muscles throughout 
the body. The disease has a poor prognosis and leads to a life-threatening state in 
3–5 years mainly due to dysphagia or respiratory failure. To date, nearly 40 genes, 
including RNA-binding protein genes such as TARDBP (transactive response 
DNA binding protein), FUS (fused in sarcoma), and hnRNPA1 and hnRNPA2/B1 
(heterogeneous nuclear ribonucleoproteins A1 and A2/B1), have been identified 
as contributing factors for ALS pathogenesis (1). TARDBP codes for TDP-43 
(transactive response DNA binding protein 43 kDa). In addition, C9orf72 has 
been identified as the most frequent causative gene of familial ALS, in which 
abnormal expansion of a hexanucleotide repeat sequence (GGGGCC) in the non-
coding region of the gene is observed (1). These gene mutations are responsible 
for tau-negative frontotemporal lobar degeneration (FTLD) and ALS, suggesting 
that these two diseases share a common pathological mechanism. In addition to 
familial cases caused by gene mutations, the disappearance of TDP-43 from the 
nucleus, and the aggregation/deposition of truncated, hyperphosphorylated, and 
ubiquitinated TDP-43 in the cytoplasm are observed in neurons of most sporadic 
ALS cases, which is one of the major pathological hallmarks of the disease (2, 3). 
In addition, abnormal cytoplasmic mis-localization/deposition of FUS, and the 
co-localization of other RNA-binding proteins with TDP-43 or FUS, have been 
reported (4, 5). These observations suggest that functional changes in RNA-
binding proteins, including TDP-43 and FUS, occur in ALS neurons and that 
aberrant RNA metabolism caused by these changes may be involved in the patho-
genesis of ALS.

FUNCTION OF RNA-BINDING PROTEINS

TDP-43 and FUS are expressed ubiquitously in the body, and they are mainly 
present in the nucleus of cells. Both TDP-43 and FUS control the transcription of 
genes and the splicing of transcribed immature pre-mRNAs (6). It is also reported 
that TDP-43 and FUS are involved in the regulation of miRNA biogenesis (7, 8). 
In addition, TDP-43 and FUS shuttle between the nucleus and cytoplasm, export 
mRNAs from the nucleus, transport mRNAs in the cytoplasm, and regulate their 
translation (6). mRNAs released from the nucleus exist in the form of mRNA-
RNA-binding protein complexes, called RNA granules, within the cytoplasm. 
Each RNA-binding protein has a consensus motif of RNA sequence with high-
affinity binding capabilities for specific mRNAs. mRNAs are transported to the 
required site with their translation suppressed by RNA-binding proteins in RNA 
granules. Subsequently, mRNAs are released from the granules for translation by 
ribosomes into proteins (9). There are different types of neuronal RNA granules, 
including stress granules, transport granules, and P bodies (processing bodies). 
Stress granules are formed during cellular stress, for example, starvation and 
 oxidative stress. Transport granules transport mRNAs in axons and dendrites, and 
P bodies are involved in mRNA degradation (9). RNA-binding proteins interact 
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and complex with each other to form RNA granules, and thus modulate the 
 function of each other. For example, fragile X mental retardation protein (FMRP), 
the causative gene product of fragile X syndrome, has been reported to form 
a   complex with TDP-43 which alters its aggregation activity and translation of 
target mRNAs (10). 

Neurons have long neurites. Axons can be up to a meter long in motor neurons 
with an area 1,000 times that of their cell bodies. At the tip of axons, growth cones 
and pre-synapses exist in developing and mature neurons, respectively, which 
support binding with other neurons, or effector receptors, to form synapses and 
communicate with each other. To maintain the axonal morphology and function, 
neurons actively transport cell components such as proteins and intracellular 
organelles along axons via motor proteins, for example, kinesin superfamily 
proteins (11). Most of the proteins required for axonal formation and maintenance 
were previously thought to be supplied by transporting the translated proteins 
directly from the cell bodies. However, in recent years, there is growing evidence 
that a subset of mRNAs is transported along axons as neuronal RNA granules 
where translation of the proteins occurs locally, at destination. In axons, all the 
machinery necessary for local translation, such as ribosomes, translation initiation 
factors, and elongation factors are present (12) to take part in the protein supply 
locally. The transport and local translation of mRNAs in axons actively take place 
during axon pathfinding and outgrowth to the projection destination through 
neurogenesis, formation of networks via synapses, and regeneration of axons and 
synapses during neuronal injury. They also help to maintain axons in a mature, 
steady state (13). The advantage of local translation of mRNA in axons is that it 
can supply proteins more quickly upon demand than transporting proteins along 
the axons.

PATHOLOGICAL ROLE OF RNA GRANULES

TDP-43 and FUS are constituents of stress granules, which repress the translation 
of mRNAs (14). Both TDP-43 and FUS are also involved in axonal transport of 
mRNAs (15, 16). Both RNA-binding proteins have highly hydrophobic amino 
acid sequence regions called the low-complexity domains (LCD), through which 
they interact with each other to form multimers. This contributes to the formation 
of RNA granules with a non-membranous interface called liquid droplets. 
Mutations of the genes found in familial ALS reside mainly in the LCD of TDP-43, 
and the nuclear localization signal (NLS) site required for nuclear import of 
FUS. These mutations affect the intracellular localization as well as aggregation 
 propensity of proteins. Mutant TDP-43 and FUS cause dysregulation of stress 
granules and trigger the formation and aggregation of inclusion bodies in ALS (14). 
Furthermore, mutations in TDP-43 increase granule viscosity, confer toxic gain-
of-function effects, and cause morphological instability of RNA granules leading 
to impaired anterograde axonal transport in ALS (15, 17). 

As impaired TDP-43 and FUS-mediated pathological conditions of ALS prog-
ress, the amount of proteins required for normal physiological transport of 
mRNAs for local translation in axons decrease. Furthermore, TDP-43 and FUS 
themselves, accumulated in the axons, inhibit their own function of axonal 
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mRNA transport (5, 18). Consequently, reduced transport of critical mRNAs for 
axonal maintenance will cause morphological and functional changes of axons, 
ultimately resulting in degeneration of motor neurons. Functional deficits at neu-
romuscular junctions precede the clinical phenotype and motor neuron loss in 
mutant TDP-43 or wild-type FUS transgenic mice (19,20). Studies in cultured 
motor neurons and zebrafish indicate that TDP-43 and FUS are involved in axon 
outgrowth (21–23). These findings imply that axonal degeneration is a primary 
executor of ALS pathogenesis. TDP-43 transports mRNAs of NEFL and futsch/
MAP1B in axons. Futsch/MAP1B regulates synaptic microtubule organization, 
and aberrant neuromuscular junctions are observed in TDP-43 mutant Drosophila 
due to a decrease of MAP1B mRNA and translated protein at synapses (24, 25). 
FUS transports mRNA of Fos-B in axons, dysregulation of which causes abnormal 
axon branching (26). It has also been shown that TDP-43 and FUS bind to 
mRNAs that have structures called G-quadruplex and transport them to neurites 
(27, 28). ALS-linked mutant TDP-43 lacks the activity of binding and transport 
of mRNAs bearing G-quadruplex, which correspond to approximately 30% of 
neuronal mRNAs (27). Thus, decreased levels of functional TDP-43 may cause 
reduced axonal mRNA transport and resultant axonal degeneration in ALS. 

RIBOSOMAL PROTEIN mRNAS AS AXONAL 
TRANSPORT TARGETS

Ribosomes are involved in the translation of proteins from mRNAs, and there are 
two types in eukaryotes: cytoplasmic and mitochondrial. Each type is composed 
of about 80 different ribosomal proteins and four ribosomal RNAs. Ribosomes are 
present in axons as well as in cell bodies of neurons. mRNAs of translation-related 
proteins, including ribosomal proteins, are abundant in axons compared to those 
in cell bodies (29–31), suggesting that the transport of the mRNAs to axons has 
functional significance. Although some target mRNAs transported by TDP-43 in 
axons have been reported, there has been no comprehensive study to identify 
critical TDP-43 targets in relation to ALS pathogenesis. Therefore, we searched for 
transport target mRNAs of TDP-43 unbiasedly by using compartment culture 
devices to isolate axon-rich fractions (29). In our analysis, many cytoplasmic ribo-
somal protein (Rp) mRNAs were reduced in axons, but mitochondrial ribosomal 
protein mRNAs were not reduced. This means that the sequence specific to 
 cytoplasmic ribosomal protein mRNAs may be important for axonal transport 
by TDP-43. 

TDP-43 and Rp mRNAs are present in a granular pattern in axons, colocalize 
with each other and move along axons as one, reflecting that Rp mRNAs are trans-
ported by RNA granules containing TDP-43. The mRNAs of Rp and translation 
elongation factors have a unique pyrimidine repeat sequence called 5’terminal 
oligopyrimidine (5’TOP) in their 5’untranslated regions, which is thought to be 
the binding site of TDP-43 for axonal transport. Among the RNA-binding proteins 
known to bind to mRNAs with 5’TOP is La, which was identified as an autoanti-
gen in rheumatic diseases, and controls the translation of 5’TOP mRNAs by 
 binding to them (32). La co-localizes with TDP-43 and Rp mRNAs in axons and 
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binds to TDP-43. In ALS patients with pathological changes of TDP-43 localiza-
tion, RP mRNAs are reduced in the pyramidal tracts of the medulla oblongata 
where the axons of motor neurons exist (29). Overexpression of several Rps miti-
gates the deficit of axon outgrowth caused by TDP-43 knockdown (Figure 1), 
suggesting that Rps may be useful tools for treating ALS and FTLD.

LOCAL TRANSLATION IN AXONS IN PHYSIOLOGICAL 
CONDITIONS AND ALS PATHOGENESIS

Ribosome assembly occurs primarily in the nucleolus, and it has been thought 
that ribosomes present in axons are maintained after assembly by transport from 
cell bodies or supply from glial cells (33). However, in recent years, it has been 
reported that some Rps are replaced with newly translated ones on aged  ribosomes 
existing in the cytoplasm (34), and Rp mRNAs are locally translated at axon ter-
minals to maintain the function of ribosomes to aid in axonal  branching (35). It is 
also known that mRNAs of the translation initiation factors eIF2B2 and eIF4G2 
are transported in axons, where they are translated into proteins, and involved in 

Figure 1. Rescue of axon outgrowth deficit in TDP-43-knockdown neurons by Rp overexpression. 
A. Representative images of neurons in each condition. B. Axon length in each group. Rpl41, 
Rpl26, Rps7 and Rplp1 were examined as representative Rp components. Results indicate 
mean ± standard error. *P < 0.001 compared with control neurons, and #P < 0.005 compared 
with TDP-43 KD neurons by one-way ANOVA test. KD, knockdown; Rp, cytoplasmic 
ribosomal protein.
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the maintenance of overall local translation function (36). More recently, it has 
been pointed out that ribosomes have heterogeneity depending on the cell types 
and subcellular compartments and may have a translation function specific to 
each site (37). These observations indicate that proper functioning of ribosomes 
and translation factors are essential for maintaining local translation in axons, and 
the survival of neurons.

Rp and mitochondrial complex-related mRNAs are unstable in fibroblasts 
and  induced pluripotent stem cells of C9orf72-mutated ALS patients (38). Also, 
TDP-43 has been shown to regulate local translation in axons of motor neurons (39). 
Furthermore, mice expressing mutant FUS have an overall decrease of local 
translation in axons (16). These findings strongly suggest that Rp mRNA metabolism 
disorders or ribosome dysfunction may be involved in the pathogenesis of ALS. 
Therefore, we hypothesize that Rp mRNAs transported in axons by TDP-43 
regulate translation function of axonal ribosomes by replacing defective Rps with 
locally translated ones, the disturbance of which will cause neurodegeneration in 
ALS and FTLD (Figure 2).

The importance of local translation in motor axons has been demonstrated in 
another motor neuron disease, spinal muscular atrophy (SMA). SMA is caused by 
a decrease in the survival motor neuron (SMN) protein due to deletions or muta-
tions of the gene SMN1. Although SMN has no evidence of direct binding to 
mRNA, it is supposed to control transport and local translation of mRNA in 
axons through binding to RNA-binding proteins (40). SMN protein controls 
axon growth by modulating localization of β-actin mRNA in growth cones (41). 
Recent reports indicate that SMN protein regulates local translation in axons via 
axonal transport of the cytoskeletal-related protein growth-associated protein 43 
(GAP43) mRNA (40). Furthermore, it has been reported that a decrease in SMN 
protein reduces the translation of mTor, which is a key molecule for protein trans-
lation by increasing the expression of miR-183 in axons and suppressing local 
translation (42). These findings indicate that maintenance of local axon transla-
tion  function is particularly important for motor neuron survival, and that its 
breakdown is involved in motor neuron degeneration.

Figure 2. Schematic representation of ALS/FTLD pathogenesis due to defective local translation 
in axons.
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CONCLUSION

In the future, functional analyses of other ALS-causing gene mutations and further 
analyses using ALS patient samples will clarify the significance of local transla-
tional dysfunction in neuronal axons in the pathogenesis of ALS. Furthermore, by 
identifying the most critical proteins involved in neurodegeneration due to the 
local translation deficit, new therapeutic targets could be identified.
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Abstract: Early detection of amyotrophic lateral sclerosis (ALS) is critical for 
 better therapeutic outcomes. The median time from symptom onset to diagnosis 
of ALS is 11 months, with a range of 6-21 months. Given that the median life 
expectancy is three years, it is important to shorten the diagnostic journey, initiate 
therapies promptly, and facilitate clinical research participation. Biomarkers may 
be the key to enhancing early diagnosis, tracking disease progression, and testing 
target engagement of promising therapeutics. Clinically valid biomarkers for ALS 
are currently lacking, and research has been ongoing to identify appropriate 
 biomarkers. Ideal biomarkers should be minimally invasive, such as blood. In this 
chapter, we review our current understanding of blood-based biomarker research 
in ALS and discuss future directions. 
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is mostly a sporadic disease that leads to 
 progressive degeneration of the cortical, bulbar, and spinal motor neurons (1–3). 
The median age of onset of sporadic ALS is 55, with a male predominance 
(1.5:1) (2). Diagnosis is based on upper motor neuron signs (spasticity, increased 
tendon reflexes) and lower motor neuron dysfunction, which may be supported 
by electrophysiological findings (1). Weakness and atrophy begin either in the 
bulbar region or in the limb muscles in about a third of cases and spread to the 
contralateral limb. Respiration is usually affected late in the disease and up to 50% 
may have evidence of frontotemporal dementia (FTD). Patients with older onset 
age, bulbar dysfunction, greater clinical disability, and low respiratory function 
have the poorest prognosis (1, 2). The median life expectancy from symptom 
onset is approximately three years, with a five-year survival rate of 20–25% and a 
20-year survival rate of 5% (2). Most cases are sporadic, but 10–15% are of auto-
somal dominant inheritance. 

Biomarkers can serve as tools for early diagnosis, predictors of prognosis, 
indicators of target engagement or therapeutic response, and enablers of discovery 
of future therapeutics for ALS. Biomarker development efforts for ALS have been 
hampered by a number of issues including small sample size, methodological 
variation, and lack of standardized techniques. On average, time from symptom 
onset to clinical diagnosis spans 11 months and this time is critical for life-saving 
interventions and therapies (4). Biomarkers could hasten diagnosis to allow for 
earlier introduction of therapies. Prognostic biomarkers are critical due to the 
heterogeneous nature of ALS and could facilitate prediction of how a subgroup of 
ALS subjects might progress or respond to a therapy. The low prevalence of ALS 
is an important issue that negatively affects clinical trials and biomarker 
development (5–7). In general, recruitment to clinical trials in rare diseases like 
ALS is a challenge. In ALS, several factors reduce the likelihood of participation in 
clinical trials including delay or uncertainty in diagnosis, slow progression, 
respiratory compromise, short life expectancy, and in some cases, dislike of being 
assigned to the placebo group. Discovery of diagnostic, prognostic, and target-
engagement biomarkers are essential for accelerating the research and development 
of ALS therapeutics. In this chapter, we provide an overview of our current 
understanding of blood-based biomarkers for ALS.

POTENTIAL BIOMARKERS FOR ALS

The body of knowledge on biomarkers of ALS is limited. Ideally, a biomarker for 
ALS should be easy to quantify, minimally invasive, specific, reliable with an 
uncomplicated measurement process, and reproducible across multiple 
laboratories (8). Figure 1 summarizes the main areas of biomarker research in 
ALS, all of which target pathological findings in the disease. These aim to measure 
neurodegeneration, neuroinflammation/systemic inflammation, oxidative stress, 
excitotoxicity, mitochondrial function, and protein aggregation/proteostasis. 
Tables 1 and 2 summarize the overall findings of blood-based measures (9–30). 
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Figure 1. Biomarker Focus in ALS. Areas of biomarker development are focused on pathological 
findings in ALS. These include neuroinflammation/systemic inflammation, mitochondrial 
dysfunction, neurodegeneration, and protein aggregation/proteostasis. Created with BioRender.com

TABLE 1 Blood Based Biomarker Studies 

Target Source Sensitivity/Specificity n Source

TDP-43 Plasma NA 319 (9)

Exosome miRNA Plasma NA 40 (10)

Exosome proteomics Plasma NA 22 (11)

Proteomics Plasma 58% and 90% 295 (12)

Glutamate Uptake Platelet NA 82 (13)

Mito-Respiration Platelet NA 15 (14)

Serotonin Platelet NA 114 (15)

NfL Serum/Plasma 84–100% and 76–97% 248 (16)

NfH Serum/Plasma 61–80%,72.1–83.7% 157–331 (16–18)

Cytokines Serum/Plasma NA 87–183 (19–21)

Ferritin Serum/Plasma NA 104–694 (22–24)

Creatine Kinase Serum/Plasma 63.8% and 54.3% 216–834 (22, 25)

Non-coding RNA Whole Blood 73.9–93.7% 88 (26)

Chromosomal Confirmation Whole Blood 83.33–87.5% 58 (27)

Microarray analysis Whole Blood 87% 1,116 (28)

Immune Cell Profiling Whole Blood NA 80 (29)

T-regs Whole Blood 73.9–76.9%, 69.6–73.1% 217 (30)

http://BioRender.com
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In  this section, our current knowledge on biomarkers for both familial and 
sporadic ALS are discussed. 

C9ORF72 protein 

The most common genetic abnormality in frontotemporal lobar degeneration 
(FTLD) and ALS is the expansion of GGGGCC (G4C2)n repeat in an intron of 
chromosome 9 open reading frame72, depicted as C9ORF72 (31, 32). GGGGCC 
repeat expansions are translated through a repeat associated non-ATG (RAN) 
mechanism that does not require the AUG start codon (33). This non-canonical 
type of protein translation takes place without frame shifting or RNA editing, 
resulting in production of dipeptide repeat (DPR) proteins. There are five known 
DPR proteins, Poly-GA, Poly-GP, Poly-GR, Poly-PA, and Poly-PR (34, 35). These 
DPR proteins display different profiles across neurodegenerative diseases and 
could be potential biomarkers. Poly-GA proteins are associated with inclusion 
bodies when TDP-43 aggregation is lacking (TDP-43-negative inclusions) (35). In 
the neurons of post-mortem brain, Poly-GA protein aggregates are surrounded by 
TDP-43 aggregates (36). Poly-GR and Poly-PR DPR proteins cause neurodegen-
eration in drosophila without TDP-43 aggregation (37). Some studies suggest 
Poly-GA aggregation can induce TDP-43 phosphorylation and aggregation (35). 
Thus, the precise role of DPR proteins in TDP-43 aggregation has not yet been 
resolved. The G4C2 repeats can be measured in blood (38) and could serve as a 
blood-based biomarker for ALS. For familial ALS cases, peripheral blood lympho-
cyte levels of mutated SOD1 and mutated C9ORF72 were used to measure target 
engagement in a clinical trial. Although primary outcomes of clinical trials are 
focused on cerebrospinal fluid (CSF)-based biomarkers, blood cell profiles appear 
to be changing as well. For example, SOD1 levels were reduced in peripheral 
blood lymphocytes in a pyrimethamine clinical trial (39). Poly-GP repeats in 
C9ORF72-positive ALS cases are detected in peripheral blood mononuclear cells 

TABLE 2 Blood based biomarkers based on ALS categories (7)

Familial ALS Biomarkers Sporadic ALS Biomarkers

TDP-43 TDP-43

FUS FUS

C9ORF72 Neurofilaments

Extracellular RNA

Stress granules

Progranulin

TNF-a and range of cytokines

Metabolites (i.e., creatine kinase, platelet serotonin)

Mitochondrial biomarkers (i.e., cytochrome oxidase, mitochondrial 
respiration rate, reduced Complex-II activity)
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(PBMCs) (39). The ability to detect these in blood is promising for target engage-
ment in clinical trials with therapies aimed at restoring proteostasis. 

Neurofilaments 

Neurofilaments function to maintain axon structure and transport (40). 
Neurofilaments exist in three isoforms; high-molecular-weight subunit (180–200 
kDa [NfH]), middle-molecular-weight subunit (130–170 kDa [NfM]), and low 
molecular-weight-subunit (60–70 kDa [NfL])—all are exclusively expressed in 
neurons (41). Neurofilaments are considered surrogate biomarkers of neuronal 
degeneration (42). Aberrant NfL accumulation is observed in both familial and 
sporadic ALS patients (43–47). CSF levels are considered better than blood levels 
for the diagnostic confirmation of ALS (48). NfL levels increase during early stages 
of ALS (18). Further studies show NfL increases as early as 12 months prior to 
symptom onset in ALS and could be a predictive biomarker (49). Single molecule 
array technology or SIMOA has enabled the quantification of NfL in serum and 
plasma at pictogram/mL sensitivity (50, 51). NfL is widely used as a biomarker of 
ALS. NfL levels in serum are higher in ALS subjects and correlate well with CSF 
measurements (52). Overall, NfL strongly correlates with survival, but levels are 
largely steady over time and show no correlation with functional diagnostic scores 
such as the El Escorial Criteria (7, 16, 53). Using the SIMOA assay, serum NfL 
may be not only a clinically validated prognostic biomarker for ALS but may also 
be a biomarker of treatment effect (54). Plasma neurofilament heavy subunit 
(pNfH) has shown variable results across studies (7, 53). One study showed ele-
vated pNfH levels predict faster progression at 4 months while another study 
showed it was associated with higher mortality at 12 months (18). Other studies 
show pNfH levels are neither steady nor reliable longitudinally and are not cor-
related with disease progression. Overall, the rate of change in blood pNfH is not 
reliable to predict disease progression and its utility as a diagnostic marker remains 
to be realized (16–18).

TDP-43 

Transactive response (TAR) DNA binding protein 43 (TDP-43) regulates gene 
transcription, mRNA splicing, stability, and translation (55). Mutations in TDP-43 
cause familial forms of ALS and TDP-43 aggregates are found in most ALS subjects 
on autopsy (56–58). TDP-43 and its post-translational modifications can be 
measured across numerous biofluid and could serve as a biomarker for ALS 
(59–65). Within the ALS field, CSF TDP-43 measurements are preferred over 
blood-based samples. However, lumbar punctures are invasive, and patients are 
less likely to agree to this procedure for CSF sampling. Mass spectrometry analysis 
of post-mortem brain tissue from ALS subjects revealed a number of TDP-43 
post-translational modifications including hyperphosphorylation, acetylation, 
ubiquitination, deamidation, and oxidation (66). Hyperphosphorylation (67, 68) 
and lysine acetylation increase TDP-43 aggregation (69). Phosphorylation of 
TDP-43 between amino acids 220-414 is suspected to prevent TDP-43 degradation 
and increase its expression levels (70). Plasma TDP-43 is higher but is unchanged 
in serum (9). TDP-43 is mis-localized in cytoplasmic fractions of PBMCs while 
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overall expression of TDP-43 is not changed. TDP-43 levels in PBMCs correlate 
with disease burden over time (62, 71, 72). Longitudinal studies showed that 
TDP-43 plasma levels are highly variable over time, and between individuals (7). 
These variable findings could be a consequence of blood handling, hemolysis, 
and coagulation. Classification of TDP-43 expression and post-translation 
modifications in the blood of ALS subjects could be used as a biomarker for 
detection/diagnosis and therapeutic outcomes.

Extracellular RNAs, exosomes and stress granules 

Extracellular RNAs are found outside the cells in extracellular vesicles (EVs) 
such as exosomes, micro vesicles and apoptotic bodies, or RNA-binding 
 proteins. Their association with lipids and proteins protect them from degrada-
tion and allows for their measurement. Extracellular RNAs are found in many 
forms, such as tRNA, mRNA, microRNA (miRNA), and circular RNA (circRNA) 
within EVs. tRNA fragments may be disease-specific and should be considered 
for biomarker development (73, 74). Next generation sequencing of neural 
enriched exosomes from plasma of ALS patients identified eight miRNAs that 
could discriminate ALS from healthy subjects (10). circRNA can be detected in 
extracellular fluid (75–78). The function of circRNA is largely unknown but 
regulation of gene expression is a likely function (79). High levels of extracel-
lular circRNA in CSF suggest that the central nervous system (CNS) may secrete 
them (80–82). The potential of circRNA as a biomarker in ALS was recently 
reviewed (83). 

Exosomes are 50-100 nm extracellular vesicles released from cells. In blood, 
exosomes are released by erythrocytes, platelets, endothelial cells, and lympho-
cytes (Table 3). Proteomic analysis of exosomes from ALS and Parkinson ’s disease 
(PD) subjects was able to discriminate between these two diseases (11). Exosomes 
derived from blood, serum, or plasma show high contamination of blood  proteins, 
which decreases the specificity of proteomic analysis (84). 

Stress granules are cytoplasmic RNA complexes that form in response to envi-
ronmental stress. Several ALS-associated proteins, such as FUS (85), TDP-43(86), 
Ataxin2 (87), and SOD1 variants (88) have been identified as integral compo-
nents of stress granules. Currently, measurements of stress granules are limited to 
cell-based assays. 

TABLE 3 Exosome Defining Markers

Exosome Donor Cell Marker

Platelets CD31, CD41, CD61, CD42b, GPIIb-IIIa

Endothelial cells CD31, CD42B, CD51, CD105

Monocytes CCR2, CD14, CD41a

Neutrophils CD43, CD16

Lymphocytes CD4, CD8

Erythrocytes CD235a
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Progranulin

Progranulin (PGRN) is a cysteine-rich secretory protein involved in cell prolifera-
tion, inflammation, and tumorigenesis (89). Brain progranulin is implicated in 
neuronal survival as well as pathogenesis of neurodegenerative diseases (90, 91). 
Progranulin levels can be measured in both CSF and serum of FTD, ALS, and 
Alzheimer’s disease patients (92). Although no comprehensive study is available 
to compare progranulin levels in brain with CSF and serum values (92), blood 
levels are 35 times higher than CSF in ALS subjects with FTD (93). This suggests 
blood measures of progranulin could serve as a biomarker in ALS. 

RNAseq and proteomics 

Microarray analysis of blood cells has allowed for machine learning and identifica-
tion of ALS subjects from the healthy (28) with an accuracy of 87%. Gene expres-
sion changes observed in ALS blood cells include increased neutrophil related 
genes with decreased erythroid lineage-specific genes. The expression of copper 
chaperone of superoxide dismutase (CCS) and other mitochondrial respiration-
linked genes were significantly associated with survival in ALS subjects (28). 
Further, circulating non-coding RNAs have shown a 73.9-93.7% accuracy in 
 discriminating the healthy from ALS populations (26). Proteomic analysis of ALS 
blood samples shows changes in proteins involved in the regulation of metabo-
lism and mitochondrial function, particularly carbohydrate, creatine, and lipid 
metabolism (12). Nitric oxide and reactive oxygen species production are 
 upregulated in macrophages of ALS patients (94). Protein expression of TDP-43, 
cyclophilin A, and ERp57 in PBMCs were found to associate with disease 
 progression in ALS subjects. A multiprotein expression profile in PBMCs could 
discriminate ALS from healthy controls with 98% power, and discriminate ALS 
from other neurologic disease with 91% power. The multiprotein expression 
 profile was further validated in the G93A SOD1 ALS mouse model using both 
PBMCs and spinal cord tissue (62). Chromosomal conformation in blood samples 
can also discriminate between ALS and healthy subjects with a sensitivity of 
83.33–87.5% and specificity of 75.0–76.92% (27). 

Inflammatory markers 

Cytokine expression in blood is altered in ALS subjects but do not change over 
time. Tumor necrosis factor α (TNF-α) and downstream effector interleukins are 
increased in ALS subjects (19–21). Data from 25 independent studies examining 
serum and plasma levels of cytokines show that TNFα, IL-1β, IL-6, IL-8, TNF 
receptor 1, and vascular endothelial growth factor (VEGF) are elevated in ALS (7). 
Other inflammatory markers such as complement components, C reactive pro-
tein, and chitotriosidase have shown equivocal association with ALS (7). Immune 
cell profiling has shown that higher levels of lymphocytes, monocytes, and T cell 
subtypes are associated with longer survival times (29). CD4+CD25High T-regs 
are lower in ALS patients (30, 95), and is a measure of ALS progression. Overall, 
inflammatory markers have not shown specificity for ALS diagnosis and no asso-
ciation with disease progression has been established yet. 
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Metabolites 

Serum and plasma creatine kinase are elevated in ALS subjects and correlate with 
the revised ALS functional rating scale (ALSFRS-R) score and other functional 
outcomes in ALS (22, 25). Plasma and serum ferritin levels are higher in ALS 
subjects. In some studies, ferritin levels were associated with survival and in 
others it did not (22–24). Glutamate uptake is impaired in platelets and astrocytes 
derived from ALS subjects (13). Furthermore, platelet serotonin levels are reduced 
in ALS subjects and is associated with an increased risk of death (15). 

Mitochondrial biomarkers 

Mitochondrial dysfunction is observed across numerous tissues in ALS subjects. 
Spinal cord mitochondrial DNA shows higher levels of mutation, and reduced 
citrate synthase, complex I+III, II+III and IV activities (96). Induced pluripotent 
stem cells (iPSCs) derived from ALS patient fibroblasts show reduced mitochon-
drial function when differentiated into motor neurons. iPSC-derived ALS motor 
neurons had reduced ATP production and mitochondrial respiration and increased 
glycolytic flux (97). Muscle samples from ALS patients show a large number of 
cytochrome oxidase-negative fibers, and some of these patients had reduced 
enzyme activity (98, 99). Two separate studies of ALS muscles showed reduced 
mitochondrial respiration and changes in mitochondrial DNA (99, 100). Tissues 
outside of the spinal cord and muscle also show changes in mitochondrial 
 function. Fibroblasts from ALS patients show reduced basal, uncoupled, and ATP-
linked respiration (101). Hepatic mitochondria from ALS subjects show ultra-
structural changes with enlarged mitochondria, inclusions, and disorganized 
structure (102). Lymphocytes from ALS subjects show increased calcium levels 
and reduced uncoupled respiration (103). These observations show that mito-
chondrial abnormalities are a systemic finding in ALS. While most mitochondrial 
respiration indices were reduced in ALS platelets, non-mitochondrial respiration 
and complex II activities were increased. Complex II activity reduction over three 
months correlated with decline in function on the ALSFRS-R scale (14). Two sepa-
rate clinical trials, testing Rasagiline as a therapeutic for ALS, used lymphocyte 
apoptosis, mitochondrial superoxide, and mitochondrial membrane potential as 
secondary outcomes (65, 104). Based on abnormal lymphocyte mitochondrial 
membrane potentials (101), it would seem reasonable to pursue these as potential 
biomarkers. Blood cell respiration or enzyme Vmax assays could be used to deter-
mine if a drug is engaging its target by altering mitochondrial function. 

CONCLUSION

ALS is a rare disease. We estimate the ALS population in the US to be about 17,000 
people (13,000–24,000) based on a US population of 329,450,000 (105). This is 
one of the main reasons affecting biomarker development for ALS. The exact 
mechanisms underlying motor neurodegeneration and muscle impairment in ALS 
are unknown. Current hypotheses include neuroinflammation, mitochondrial dys-
function, oxidative stress, excitotoxicity, and protein aggregation (1,  106–112). 
Lack of understanding of how these mechanisms interact at different stages of the 
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disease is another issue limiting the progress of biomarker development and sub-
sequent drug development for ALS. The lack of validated biomarkers for ALS has 
directly affected drug development. There are three FDA approved therapies for 
ALS: riluzole and edaravone for modulating the course of the disease, and dextro-
methorphan/quinidine for symptomatic treatment of sialorrhea. The effect of rilu-
zole is modest, extending the lifespan by 2–3 months (113–115). Edaravone 
appears to slow progression and preserve function in ALS patients (115–117). Like 
riluzole, edaravone (Radicava) can have some side effects but its intravenous route 
of administration can be an obstacle at times. Nuedexta targets pseudobulbar 
symptoms and has no known effect on life span (118, 119). Current clinical trials 
for ALS are listed on https://clinicaltrials.gov/ [accessed on 17 June 2021]. There 
are 448 ongoing studies in Unites States, and most of these would benefit from a 
host of exploratory and confirmatory biomarkers. 

Blood-based biomarkers are considered non-invasive and have the potential to 
be cost-effective. Disagreements exist regarding the utility of blood measures as 
surrogate for reflecting the status of motor neurons in the spinal cord or muscle. 
However, as shown in Figure 2, neurodegeneration and reactive gliosis contribute 
to blood brain barrier (BBB) breakdown. This BBB breakdown can lead to leakage 
of CNS exosomes/EVs and other molecules into the blood stream. Further studies 
are required to assess the correlation between blood measures and spinal cord/
muscle tissue disease status. Validated biomarker application in people with ALS 

Figure 2. Blood Brain Barrier Breakdown and Circulating Biomarkers. Neurodegeneration and 
reactive gliosis can lead to blood brain barrier (BBB) disruption (and vice versa). This BBB 
disruption could allow for CNS derived circulating biomarkers to be measured. Created 
with BioRender.com

https://clinicaltrials.gov/
http://BioRender.com
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would derive numerous benefits. In addition to shortening the diagnostic journey, 
disease biomarkers may generate some cost-savings and enhance enrollment in 
clinical trials. Timely diagnosis will also reduce the time to starting currently 
available therapies. Biomarkers have the potential to provide valuable information 
about disease trajectory and critically important early insight into the effectiveness 
of experimental therapeutics. There is a great unmet need for cost-effective, 
reliable, accurate, non-invasive and reproducible biomarkers for ALS. 
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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease 
which leads to a progressive degeneration of motoneurons. Since the pharmaco-
logical options available provide only a slight increase in life expectancy, cell ther-
apy is emerging as a promising therapeutic alternative for ALS. A growing body of 
evidence from studies using genetically engineered ALS animal models demon-
strate the safety and efficacy of therapies based on different cell types such as 
mononuclear cells, neural progenitors, and mesenchymal stem cells. Despite the 
encouraging results in preclinical studies, cell therapy-based clinical trials for ALS 
have achieved only modest results so far, probably due to the genotypic variations 
seen among ALS patients, which is difficult to reproduce in animal models. 
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The advent of induced pluripotent stem cells (iPSCs) has enabled the develop-
ment of patient-specific cell lines, a valuable tool to investigate in vitro molecular 
 mechanisms of the disease and therapies in different genetic backgrounds. The 
applications of ALS iPSCs and their future therapeutic potential are also briefly 
discussed in this chapter.

Keywords: amyotrophic lateral sclerosis; cell therapy; induced pluripotent stem 
cells; mesenchymal stem cells; stem cells 

INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a fast-progressing neurodegenerative dis-
ease that affects motoneurons and results in neuronal death. Although neuronal 
death is the hallmark of the disease, non-neuronal cells such as astrocytes and 
microglia play an important role in disease progression (1). Although much prog-
ress has been made in the comprehension of ALS pathophysiology, only Riluzole 
and Edaravone are approved by the FDA (Food and Drug Administration) and 
have a modest increase in the survival time (2). Cell therapy is emerging as a 
promising strategy to treat ALS. Several cell types have been suggested, including 
stem and progenitor cells, and adult somatic cells from different sources, with or 
without genetic modifications (Figure 1).

Stem cells are defined as cells capable of self-renewal and differentiation into 
more than one cell type. They are classified as totipotent, pluripotent or multipo-
tent, depending on differentiation capabilities. Totipotent stem cells are the 
zygotes, that could form the whole individual, while pluripotent stem cells are 
capable of forming cells from the three germ layers: as embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs). Multipotent stem cells gener-
ate only cells from a specific linage or tissue, such as neural stem cells (NSCs) or 
mesenchymal stem cells (MSCs). 

Many factors must be considered to decide the most appropriate cell therapy 
for a given patient. The clinical problem and the tissue that must be repaired are 
the primary factors. Cell therapy may aim to regenerate cells or tissue, and in this 
case pluripotent or multipotent stem cells from the tissue of interest could be used 
to replace the lost cells. However, cell therapy could also be used to favor the 
damaged tissue survival or regeneration. MSCs, for example, release paracrine 
factors that protect host cells that are degenerating, reduce inflammation, stimu-
late angiogenesis, among others (3). In practice, each stem cell has its advantages 
and disadvantages for clinical application. For example, ESCs have the advantage 
of indefinitely proliferation and broad capacity for differentiation but are prone to 
form tumors or differentiate uncontrollably into undesirable cell types. These cells 
are of allogeneic origin, requiring immunosuppression when transplanted. iPSCs 
could overcome this last limitation, once they can be derived directly from the 
patient. Unfortunately, it is still expensive and time consuming to produce patient-
specific iPSCs for therapy. In addition, for diseases such as ALS in which genetic 
mutations are involved, autologous cell therapy is not the best choice. Multipotent 
stem cells, that comprises MSCs, could be used autologously, avoiding immuno-
logical concerns. However, stem cells from adult tissue are usually present in 
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limited quantities and have slow expansion rate, hindering autologous use for 
the treatment of acute illnesses or traumas, which require immediate treatment. 
In addition, the number of adult stem cells in most tissues appears to 
decrease with age (4). In this chapter, the use of cell therapy in ALS is discussed. 
Different cell types tested in ALS preclinical models and clinical trials are 
reviewed.  Their limitations, and strategies to overcome these limitations are 
described.

CELL THERAPY IN ALS PRECLINICAL MODELS

Different cell types, doses, and administration routes have been tested in ALS 
preclinical models, with variable outcomes. The most used cell types in these 
studies are mononuclear cells, MSCs and NSCs. The main findings of these thera-
peutic strategies are discussed in the following sections. 

Mononuclear cells 

The first cell therapy test aimed to replace bone marrow of ALS mice with mono-
nuclear cells from wild-type mice bone marrow or from human umbilical 

Figure 1. Therapeutic strategies using cells in ALS. Neural stem cells from different sources 
could be used to replace motoneurons or glial cells, while mesenchymal stem cells or 
mononuclear blood cells have been tested mainly as immunomodulators. Genetic 
manipulations, such as growth factors superexpression, can improve cells therapeutic 
potential. Created using https://smart.servier.com/.
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cord (5–7). Mononuclear cells are a heterogeneous population that comprise both 
hematopoietic stem cells and MSCs, as well as hematopoietic progenitors, lym-
phocytes and monocytes. At that time, some groups suggested that ALS could be 
an autoimmune disease and therefore, such replacement could alter the disease 
progression (5). Using this approach, Corti and co-workers showed increased 
animal survival and motoneuron protection, while Solomon and co-workers did 
not observe alteration in disease evolution despite observing transplanted cells in 
the spinal cord (6, 7). Other studies suggested that the number of hematopoietic 
stem cells present in each mononuclear fraction transplanted could be the reason 
for variable outcomes (5–8). Despite the contradictory results, the use of 
 mononuclear cells continued to be tested, focusing mainly in neuroinflammation 
modulation (8).

Neuroinflammation has been shown to be an important process in disease 
pathology. Microglia, astrocytes, and lymphocytes have major roles in ALS (1). 
Therefore, cell therapy could act as an immunomodulator, ultimately resulting in 
neuroprotection. Intravenous injection of mononuclear cells derived from human 
umbilical cord (hUCB-MCs) in a mice model of ALS reduced disease progression 
and increased lifespan, even when the cells were administrated after the onset of 
the disease (9, 10). This approach decreased microglia density in spinal cord, 
reduced pro-inflammatory cytokines in the central nervous system, and increased 
lymphocytes and decreased neutrophils in peripheral blood, suggesting that 
hUCB-MC therapy could result in motoneuron neuroprotection by modulation of 
host inflammatory response (9). Interestingly, hUCB-MCs administrated intra-
cerebroventriculary in murine ALS model also showed positive outcomes. 
However, transplanted cells were not found in the spinal cord, corroborating the 
hypothesis that injected cells do not necessarily need to be at the injury site to 
have a beneficial role (11).

Bone marrow mononuclear cells (BM-MCs) were also tested in mouse models 
of ALS. Although they are similar to UCB-MCs, BM-MCs can be used autolo-
gously, avoiding immunosuppression. Using BM-MCs, different injection routes, 
such as intraspinal, intramuscular, and intravenous, were tested (12–14). 
Therapies using these routes individually showed modest positive outcomes, but 
combined transplantation routes were able to delay disease progression and 
decrease microgliosis, although there was no change in lifespan (13, 14). These 
results are in agreement with the multifactorial profile of ALS, suggesting that an 
intervention in multiple pathways is necessary. In addition, BM-MC therapy in 
mice model only show positive results when administrated in the presymptomatic 
phase, an issue that could compromise translation to the clinic (12).

Mesenchymal stem cells 

MSCs are part of the pool of cells harvested from bone marrow. Despite represent-
ing only 0.001% to 0.01% of total cells (15), MSCs have been extensively studied 
as key contributors of positive therapeutic effects of BM-MCs. MSCs are versatile 
cells that strongly respond to different environments, shifting an important para-
crine activity that impacts neighboring cells. Therapeutic effects of MSCs are con-
sidered to be mostly paracrine, by their ability to secrete a wide variety of growth 
factors, cytokines, hormones, extracellular vesicles and even mitochondria, that 
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can act locally or systemically. MSCs also have practical advantages to be used in 
a clinical setting. They can be harvested from tissues such as bone marrow and 
adipose tissue for autologous transplantation, or can be isolated from umbilical 
cord, placenta, dental pulp, and other tissues that are often discarded, and used in 
allogeneic therapies, since they are low immunogenic (3). They can be expanded 
in vitro and stored in large amounts in biobanks, ready to use when necessary (3). 
To narrow the types of cells harvested from these tissues, the International Society 
for Cellular Therapy has defined minimal criteria for MSC characterization (16).

Preclinical studies of MSC therapy for ALS are primarily based on transgenic 
mice and rats with SOD1 mutations. Despite being a model that genetically repre-
sents only a small portion of ALS patients, it recapitulates critical hallmarks of 
motoneuron degeneration such as axonal degeneration, apoptosis, and accentu-
ated gliosis (17). These studies vary in their therapeutic approach, testing differ-
ent MSCs sources, allogenic or xenogeneic origin, therapeutic window, 
administration routes and dosages.

MSC therapy for ALS relies mostly on it effects directly on motoneurons and/
or indirectly on glial and immune cells. MSCs produce and secrete a wide variety 
of growth factors and cytokines known to be protective to motoneurons, such as 
GDNF, IGF-1, BDNF, NGF and VEGF (18). For this reason, many preclinical stud-
ies injected MSCs directly into the spinal cord, hoping to increase the availability 
of these factors to motoneurons. After allogenic transplantation at the onset of 
disease in rats, cells remain in the injection site until end stage of the disease, 
improving motor capacity, motoneuron survival and increasing lifespan (19), 
while human MSCs injected long before symptoms onset in mice were no longer 
detected 70 days after injection, improving motor performance without effect on 
neuron protection and animals’ survival (20). Thus, these data indicate that inte-
gration of MSCs to the target tissue can impact therapy outcome.

A less invasive approach to make MSCs secretome available to the spinal cord 
is delivering cells in the cerebrospinal fluid (CSF) by intrathecal or intracisternal 
injection. Injected in the CSF, MSCs were shown to survive in the spinal cord (21), 
spread through the ventricular system reaching the brain (22), and even differen-
tiate into astrocytes (23). Moreover, MSCs reduced astrogliosis, microglia prolif-
eration and inflammation in the spinal cord (21, 23–26). However, systemic 
administration (less invasive than intrathecal or intracisternal) of MSCs can also 
reduce inflammation in the spinal cord with limited homing in neural tissue (27), 
reducing oxidative and glutamatergic stress (28) and increasing neurotrophic fac-
tors production by glia (29). The mechanisms by which systemically injected 
MSCs exert effects in the CNS are still not clear. Terashima and colleagues (30) 
demonstrated that systemic administration of MSCs expressing HGF, GNDF and 
IGF-1 were also able to induce the expression of chemoattractants in the spinal 
cord, increasing the homing of injected bone marrow cells to this tissue.

Given the wide range of approaches to test the effect of MSCs, Zhou and col-
leagues performed a systematic review and meta-analysis of ALS preclinical stud-
ies using these cells. They included 25 studies published until July 2019 and 
found that MSC therapy in general delayed the age of disease onset, improved 
motor function, increased lifespan and reduced the estimated hazard ratio for 
disease. They also analyzed the effect of the different therapeutic approaches. 
However, given the diversity of the parameters among studies, they found no 
significant indication of advantage of any specific parameter. However, they point 
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to an indication to greater benefit of presymptomatic treatments, adipose tissue 
derived MSCs, and a better general response to treatment in female subjects.

Neural stem cells 

While the preclinical studies using MSCs in the presymptomatic stage show a 
good perspect for future ALS therapies as described above, in the clinical setting, 
most patients receive their diagnosis long after the appearance of symptoms, indi-
cating that significant motoneuron death has already occurred. Considering this 
situation, neural stem cells (NSCs) from fetal tissue or induced from ESCs and 
iPSCs would be an alternative to replace lost motoneurons. Transplanted NSCs 
were shown to integrate into ALS spinal cord and differentiate into neurons with 
functional synapses, improving motoneuron survival and motor function (31). 
However, a newly formed motoneuron in an adult human would have to extend 
their axon out of the spinal cord to a specific muscle target, and while few studies 
demonstrated the feasibility of this approach (32), this was not yet demonstrated 
in ALS models. 

Considering that the loss of motoneurons in ALS is not entirely due to cell 
intrinsic mechanisms, but also due to glial and systemic signaling, this hostile 
environment would also be detrimental to newly formed neurons. In this context, 
NSCs can also be used as a source of protective cells, as astrocytes and interneu-
rons that secrete growth factors and act as mediators to reduce local inflammation. 
NSCs can be induced to produce glial derived trophic factors such as GDNF (33) 
and differentiate into astrocytes (34). Thomsen and colleagues (35) demonstrated 
that human NSCs expressing GDNF transplanted into the cortex of ALS rats can 
improve symptoms and extend survival after differentiating into astrocytes, and 
they have also demonstrated that these cells can be safely transplanted into the 
cortex of cynomolgus monkeys (Macaca fascicularis), showing a similar pattern of 
astrocyte differentiation. While the prospect to use NSCs to replace motoneurons 
is still far away, the use of these cells to generate glia shows a great therapeutic 
potential in the near future.

CLINICAL TRIALS USING STEM CELLS IN ALS 

A variety of cells, doses, and delivery routes/sites have been tested in ALS patients 
with modest positive results regarding efficacy and safety. Clinical application of 
stem cells in ALS patients was first reported by Janson and colleagues in a pilot 
study with 3 subjects submitted to intrathecal transplantation of 2.0 × 107 or 
1.0 × 108 autologous peripheral blood stem cells (PBSCs) (36). Two patients expe-
rienced speech improvement or muscle strength gain for at least 4 months after 
the procedure. There were no adverse effects or acceleration of the course of dis-
ease over the following 12 months, indicating the safety of the method. A study 
with 20 patients tested a methodological approach aiming to improve the func-
tion of upper motoneurons by injecting 2.5–7.5 × 105 PBSCs into the frontal 
motor cortex of enrolled subjects. Compared to control group, the median sur-
vival time was significantly higher in the treatment arm, which also showed stable 
score in the ALS Functional Rating Scale Revised (ALSFRS-R) and the Spitzer 
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quality of life scale throughout the follow-up period, suggesting a delay in disease 
progression (37). An additional trial with a cohort of 67 patients confirmed that 
procedure was well tolerated, safe, and feasible (38). 

BM-MCs have also been tested for ALS therapy. A single arm phase I trial con-
ducted in Spain performed autologous BM-MCs transplantation by intraspinal 
injection in 11 spinal onset ALS patients (39, 40). A median of 462 × 106 cells 
were infused at thoracic level and subjects were followed up for 1 year. Most of 
the adverse effects reported were mild and transient, and no acceleration in dis-
ease progression was observed, as measured by neurological scales and functional 
respiratory indexes. Polysomnography showed no significant changes in sleep 
duration, quality, and ventilation after cell injection, suggesting no cortical dia-
phragmatic pathway dysfunction. Histopathological examination revealed that in 
the anterior horn of the grafted segments, motoneurons were significantly more 
numerous and were surrounded by hematopoietic cells, showing no signs of 
degeneration, suggesting a neurotrophic action of transplanted cells, as observed 
by the group in previous preclinical study (41). Sharma and colleagues combined 
intrathecal and intramuscular autologous BM-MCs transplantation in a cohort of 
37 patients and compared them to 20 control subjects (42). The survival duration 
was significantly higher in the group that underwent cell therapy and the majority 
of the patients reported improvement in speech, swallowing, respiratory capacity, 
ambulation, and fine motor activities. 

The first FDA-approved stem-cell-based trial for ALS ascertained the feasibility 
and safety of intraspinal injections of NSI-566RSC, human fetal spinal cord-
derived NSCs, in 15 patients. Initially, 12 patients received 5 unilateral or 10 
bilateral lumbar injections (1.0 × 105 cells/injection) (43, 44) and then, 5 unilat-
eral cervical injections were performed on 3 new subjects and on 3 who had 
previously received bilateral lumbar injections (45, 46). Additional 15 patients 
were recruited to phase II trial to test the safety of escalating doses of NSCs 
(2.0–16.0 × 106) (47). In general, procedure and doses were well tolerated and 
many of the adverse events were attributed to the immunosuppressant drugs. 
A similar methodological approach was used in a phase I clinical study conducted 
in Italy, with 18 spinal onset ALS patients (48, 49). In this case, neural progenitors 
were isolated from the forebrain of miscarried fetuses. According to ALSFRS-R 
scores, there was a significant but transient functional improvement within the 
first 4  months after transplantation. Although these trials demonstrate NSCs 
safety and some possible efficacy indicators, the use of these cells is often related 
to ethical and moral concerns and requires an immunosuppressive regimen, 
which can modify the effect of therapy.

BM-MSCs are among the main cell types used in clinical trials for ALS. Mazzini 
and collaborators performed two phase I trials with 9 and 10 patients, respec-
tively, to assess the safety of intraspinal transplantation of autologous BM-MSCs 
(50, 51). Different doses ranging from 7.0 to 152.0 × 106 cells were injected into 
thoracic spinal cord segments and patients were monitored every 3 months until 
death. The results of long-term follow-up of the 19 patients confirmed that proce-
dure was safe and feasible, despite the absence of clinical benefits (52). Different 
groups have shown that intrathecal transplantation of autologous BM-MSCs was 
also feasible and well tolerated (53, 54). A phase I trial conducted in the Republic 
of Korea with 7 patients demonstrated the safety of two repeated BM-MSCs intra-
thecal injections (1.0 × 106 cells/Kg/injection) (55) and the efficacy was tested in 
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a subsequent phase II study with 64 subjects (56). Changes in the ALSFRS-R 
scores showed that cell therapy was effective in delaying disease progression, and 
CSF analysis revealed a significant increase in the levels of anti-inflammatory 
cytokines as well as a reduction in proinflammatory ones after cell injections. 
Based on these studies, the Korean government approved in 2015 the use of 
autologous BM-MSCs for the treatment of ALS, becoming the first country in the 
world to license the commercialization of a stem cell therapy for the disease. Some 
studies have also combined intrathecal and intravenous or intramuscular admin-
istration of BM-MSCs in an attempt to maximize the possible therapeutic benefits 
and demonstrated a stabilization of the disease or a reduction in progression 
speed (57–60). Transplantation of MSCs derived from other sources such as 
 adipose tissue and umbilical cord Wharton’s jelly have also been shown to be safe 
and well tolerated (61, 62). 

Despite the encouraging results obtained so far, further randomized controlled 
trials with large sample sizes are needed to ascertain the efficacy of cell types, 
doses, and delivery sites/methods so reliable and reproducible therapeutic regi-
mens can be standardized. Stem cell-based clinical trials for ALS are summarized 
in Table 1. 

MODELLING ALS IN VITRO WITH INDUCED PLURIPOTENT 
STEM CELLS 

Animal models have contributed enormously to the understanding of ALS patho-
physiological mechanisms (63). However, transgenic animal models represent 
only a small fraction of familial ALS patients, and about 90% of cases are consid-
ered sporadic, without a known genetic component directly associated with the 
development of the disease. Although motoneuron death is always the final out-
come, different molecular pathways can be involved in this degenerative process, 
depending on the patient’s genetic background (64). The lack of variability in 
preclinical research could explain why therapies with promising results constantly 
fail or show just modest efficacy results in clinical trials. Therefore, more repre-
sentative ALS preclinical models, especially for the sporadic form of the disease, 
are urgently needed. 

In 2006, a breakthrough advance in the stem cell field was reported by the 
Japanese scientists Takahashi and Yamanaka––the genetic reprogramming of adult 
mice cells into embryonic-like pluripotent stem cells, called iPSCs (65). In the 
following year, the same feat was achieved with human cells (66). Through this 
revolutionary technology, it became possible to obtain stem cells capable of dif-
ferentiating into virtually any cell type from adult somatic cells such as skin, or 
peripheral blood cells, or even urine (Figure 2). 

In 2008, the first iPSCs were derived from an ALS patient, an 82-years old 
woman carrying a rare mutation in SOD1 gene. Remarkably, the iPSCs could be 
differentiated in motoneurons and astrocytes, the two neural cells mainly related 
to ALS pathology. Differentiated cells carried the same mutation from the donor 
patient, proving it was possible to reproduce in vitro a genetic profile for which, 
until then, no study model was available (67). Over the past 15 years, iPSCs have 
been derived from familial and sporadic ALS patients, with different genotypes, 
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and differentiated into cells of interest for the study of the disease, such as moto-
neurons, astrocytes, oligodendrocytes, and skeletal muscle cells. In these differen-
tiated cells, several important phenotypic alterations were found, which has 
contributed enormously to the understanding of the pathological mechanisms of 
the disease. Among the most frequent and relevant findings in motoneurons dif-
ferentiated from ALS iPSCs are reduction in viability, the presence of intracellular 
protein aggregates, changes in the electrophysiological properties and mitochon-
drial function and dynamics (68). Interestingly, several of these features are also 
present in post-mortem neural tissue from ALS patients. An important ALS histo-
pathological marker is the presence of TDP-43 protein aggregates in spinal cord 
and motor cortex, and similar aggregates are also consistently found in ALS iPSCs-
derived motoneurons (69). These findings corroborate the value of iPSCs as an 
important tool for ALS modelling.

However, the use of iPSCs and iPSCs-derived differentiated neural cells as an 
in vitro preclinical ALS model has also important limitations. There is still great 
variability among the phenotypic changes found in motoneurons differentiated 
from iPSCs by different research groups. Motoneurons harboring different SOD1 
mutations, for example, have opposite electrophysiological profiles: while moto-
neurons with the A4V mutation show hyperexcitability, motoneurons with the 
D90A and R115G mutations are hypoexcitable and have impaired spontaneous 
activity (70, 71). These contradictory results may be a consequence of using 
 different protocols for iPSCs differentiation, emphasizing the importance of using 
standardized protocols in the future. Furthermore, ALS-associated mutations 
are related to different onset age and disease progression. Thus, neural cells dif-
ferentiated from iPSCs of patients with late onset and/or slow disease progression 
may need a longer maturation time in vitro to show relevant phenotypic altera-
tions  (69). Different strategies are being tested to overcome this limitation. 

Figure 2. iPSCs can be derived from patient’s somatic cells and differentiated in motoneurons, 
glial cells and muscle fibers, to study ALS pathologic mechanisms in vitro. iPSC-derived cell can 
also be used in drug screenings and possibly in future cell replacement therapies. Created 
using https://smart.servier.com/.
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Pharmacological agents can be used to accelerate cell maturation process. One of 
these agents is progerin, a truncated protein produced by patients with Hutchinson-
Gilford syndrome, whose main characteristic is premature aging. Progerin has 
already been used in iPSCs derived from patients with aging-associated degenera-
tive diseases, such as Parkinson’s Disease, successfully accelerating in vitro appear-
ance of cellular features of the disease (72). Thus, although not yet tested in ALS 
iPSCs, the use of this drug can be a useful tool in ALS modeling as well. Alternatively, 
ALS iPSCs-derived neural cells seem to be more sensitive to different types of 
stressors that can be used to speed up phenotypic alterations onset in vitro (73). 

In a translational perspective, the use of cells differentiated from ALS iPSCs 
could be a useful platform for screening new drugs and therapies, stratifying 
responsive patients according to their genetic profile. Several drugs with thera-
peutic potential have already been tested in ALS iPSC-derived neural cells. The 
FDA-approved antiparkinsonian drug Ropinirole performed well in in vitro stud-
ies, but just in cell lines harboring SOD1 mutations, an important indicative that 
some pharmacological therapies can be effective only in a specific fraction of ALS 
patients (69). However, other drugs, such as Bosutinib, originally used for chronic 
myeloid leukemia, seems to be effective for a broader number of patients; this 
drug improved motoneuron survival in cell lines derived from patients with muta-
tions in TARDBP and C9orf72 genes, as well as from sporadic patients (74). 
Bosutinib is now being tested in a clinical trial with ALS patients (75). 

Finally, therapies using iPSCs-differentiated neural cells are promising possi-
bilities. iPSCs-derived dopaminergic neurons have recently been transplanted to 
a Parkinson’s patient, with encouraging results (76). However, in ALS, it is neces-
sary for the new motoneuron to expand its axon to the correct target site in the 
musculoskeletal system, a complicated task, leaving iPSCs-based motoneuron 
replacement therapies still a hope for the future. Transplantation of iPSCs-derived 
astrocytes, however, is an easier and interesting approach. This possibility has 
already been tested in a mouse model, and animals submitted to human iPSCs-
derived glial progenitors transplantation into spinal cord had an extension in their 
lifespan (77).

CONCLUSION

Preclinical studies and clinical trials indicate that cell therapy is a hopeful thera-
peutic alternative to ALS patients. However, further studies are required to deter-
mine ideal cells candidate, doses, and delivery routes. The great heterogeneity in 
ALS clinical and genetic presentation also makes it difficult to standardize a 
unique therapeutic protocol for cell transplantation. In this context, iPSCs-derived 
cells emerge as a promising tool for the optimization of clinical trials, helping to 
stratify patients and design effective personalized therapies. 
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Abstract: Amyotrophic lateral sclerosis (ALS) is a rare and severe neurodegenera-
tive disease affecting the upper and lower motor neurons, causing diffuse muscle 
paralysis. Etiology and pathogenesis remain largely unclear, but several environ-
mental, genetic, and molecular factors are thought to be involved in the disease 
process. Emerging data identify a relationship between gut microbiota dysbiosis 
and neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, 
and ALS. In these disorders, neuroinflammation is being increasingly recognized 
as a driver for disease onset and progression. Gut bacteria play a crucial role in 
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maintaining and regulating the immune system, and changes in gut microbial 
composition can influence neural function by affecting neuro-immune interac-
tions, synaptic plasticity, myelination, and skeletal muscle function. This chapter 
outlines the relationship between ALS and the human microbiota, discussing 
whether an imbalance in intestinal microbiota composition through a 
pro-inflammatory dysbiosis promotes a systemic immune/inflammatory response, 
and has a role in ALS pathogenesis, clinical features, progression, and outcome. 

Keywords: amyotrophic lateral sclerosis; gut-brain-axis; microbiota; 
 neuroinflammation; neurodegeneration

INTRODUCTION

The cause of amyotrophic lateral sclerosis (ALS) remains unknown for most 
patients. An increasing number of susceptibility genes has been recently reported 
(https://alsod.ac.uk [accessed on 17 June 2021]), but these account for only 
10–15% of all cases. Most often, ALS has a sporadic nature, and the onset is the 
final result of a combination of genetic and environmental factors. The latter 
include occupational exposure to toxic substances, viral infections, lifestyle hab-
its, habitual diet, and body mass index. However, contrasting results have been 
reported regarding environmental elements as being risk factors for disease pro-
gression (1). 

The study of various dietary risk factors is a fascinating topic, but data 
retrieved from these studies are hard to measure and standardize. A recent 
Italian study (2), showed that some foods and nutrients, including red and pork 
meat, proteins, sodium, and glutamic acid, may be risk factors for ALS, while 
others such as coffee and tea, bread, and raw vegetables can act as protective 
factors. It has been reported that a higher ALS risk is associated with increased 
dietary uptake of fat and glutamate (3). Likewise, in the past decades, the imbal-
ance of gut microbiota (GM) has emerged as a new player connected to the 
diet––linking the type of diet with the potential of developing ALS. Similarly, all 
reported environmental factors could theoretically impact GM and its functions. 
This chapter focuses on GM and its potential imbalance as a risk factor for ALS, 
highlighting the gastrointestinal and metabolic dysfunction, the gut microbiome 
changes in motoneuron diseases, the possible clinical correlations, and lastly, 
the potential therapeutic approaches. 

THE MICROBIOTA BRAIN-GUT AXIS 

The GM is a complex population of microorganisms residing in the intestine, with 
the highest concentration in the colon (4). Diet is a significant factor influencing 
microbiota in terms of composition and function. The GM changes throughout 
various life phases, starting relatively simple, and increasing in complexity based 
on various environmental and physiological influences (e.g., geographic location, 
race, hormones, nutrition, diet, lifestyle). The GM includes hundreds of bacterial 
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species, divided into six phyla: Firmicutes, Bacteroidetes, Proteobacteria, 
Actinobacteria, Verrucomicrobia, and Fusobacteria. Viruses, protozoa, archaea, 
and fungi are also involved in this environment. 

The GM has multiple functions. First, it constitutes the intestinal barrier, pro-
motes itself, stimulates intestinal epithelial cell regeneration, produces mucus, 
and feeds the mucosa by producing short-chain fatty acids (SCFAs). GM is 
involved in the maturation of the immune system in childhood, maturation of 
intestinal lymphoid tissue, development of effective mechanism against patho-
gens, stimulation of the acquired immune system, intestinal synthesis and metab-
olism of certain nutrients, inhibition of growth of pathogenic microorganisms, 
and detoxification of drugs (5). The GM can communicate with the central ner-
vous system (CNS) through the gut-brain axis (GBA), which is a bidirectional 
communication between the central and the enteric nervous system, linking the 
brain’s higher-order capacities with peripheral intestinal functions (6, 7). Based on 
these anatomical backgrounds, for the first time, in 2013, the National Institute of 
Mental Health, USA, launched a project on exploring the mechanisms involved in 
gut microbiota-brain communication to develop new medications or noninvasive 
treatments for mental diseases. Since then, studies on the GM’s influence on the 
brain have been increasing, and the gut microbiota-brain axis has become one of 
the focuses of neurosciences. 

ALS AND GASTROINTESTINAL SYMPTOMS 

ALS patients may present a wide range of gastroenteric symptoms and other 
autonomic and non-motor symptoms. Among these, sialorrhea is a well-known 
and disabling manifestation that may affect up to 50% of patients during the 
disease course (8). Sialorrhea may be associated with mucous secretions and 
saliva and an impairment of the ability to swallow secretions, but not due to an 
increase in saliva production. Tongue spasticity, orofacial and palatino-lingual 
muscle control failure, facial muscular weakness, and an inability to maintain 
oral and buccal competence contribute to sialorrhea (9). Sialorrhea can cause 
skin maceration, worsening of dysarthria, psychological stress, social embarrass-
ment, and worsening of quality of life. Furthermore, throat and bronchial secre-
tion and ineffective cough may impair non-invasive ventilation and may increase 
the risk of aspiration pneumonia (10), representing a frequent cause of death in 
ALS (11). Treatment of sialorrhea can include medical interventions like anti-
cholinergics and the tricyclic antidepressant amitriptyline, which is effective in 
about 70% of patients with mild to moderate sialorrhea. If those treatments are 
ineffective or scarcely tolerated, more invasive therapy with botulinum toxin A, 
B, and radiotherapy may be an option (12). Physiologically 1–1.5 liters/day of 
saliva are produced, constituted by water, electrolytes, antimicrobials, enzymes, 
and growth factors. Since salivation facilitates mastication, deglutition, and the 
beginning of digestion and protects the oral mucosa and teeth, a relationship 
between oral microbiota composition and sialorrhea may be hypothesized, but 
this is an unexplored field. Similarly, no studies explore why some patients are 
unresponsive to treatment than others and the possible role of microbiota on 
this topic. 
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Concerning intestinal symptoms, constipation has been reported in up to half 
of ALS patients during the disease course, while stool incontinence is a rare find-
ing (13). Previous studies have also reported delayed colonic transit time and 
gastric emptying in ALS patients (14, 15). Some factors such as decreased fluid 
intake due to dysphagia, dietary changes, medications, lack of physical exercise, 
motor impairment, and psychological stress have to be considered, but an auto-
nomic involvement cannot be ruled out as well (16). Changes in the intermedio-
lateral columns and the Onuf nucleus in ALS have been detected, which could 
provide an anatomical explanation for these clinical manifestations, as the enteric 
nervous system and smooth muscle automatism may be unable to modulate the 
motor functions of the digestive tract (15). Furthermore, roles for the microbiome 
in luminal fluid, bile acid metabolism (17), generation of SCFAs (18), methane 
production (19), and on the mucosal layer of the colon (20) for the regulation of 
the absorption of fluids into the bloodstream have been proposed. Correspondingly, 
the vagal nerve could be a route for GM and brain communication (16). Of note, 
GM has been found to interact with ENS-vagus nerve pathways (21) because 
bacterial-derived neurotransmitters and neuropeptides can directly activate myen-
teric neurons, which, through vagal nerve ascending fibers, deliver nerve inputs 
to the brain (22).

Dysphagia is highly prevalent in ALS, being present in about one quarter at 
onset (mainly in the bulbar phenotype) and in more than 80% of patients during 
the disease course. Dysphagia is related to tongue atrophy, dysfunction in the 
closure of the soft palate and the larynx due to the nuclear or supranuclear lesions 
of the cranial nerves, IX, X, and XII, and diaphragm dysfunction. Dysphagia 
should be assessed promptly in ALS to prevent complication (aspiration pneu-
monia, weight loss) and organize proper interventions. Physiological swallowing 
is a crucial parameter for the proper intake of drugs. Since swallowing problems 
are often underestimated in ALS patients due to the progressive adaptation to 
slow deterioration of bulbar function (23), their recognition is an important task 
in multidisciplinary disease management. Weight loss is strictly related to dys-
phagia and it is considered a negative prognostic factor for survival, where stud-
ies show that patients who had weight loss had a shorter survival time than those 
who had stable weight (24). High caloric intake and enteral feeding are com-
monly used to sustain nutrition, but it has not been convincingly shown to 
improve survival, nutritional outcomes, or quality of life (25). There is no study 
on the relationship between dysphagia, weight loss, and microbiota composition, 
although abundances of certain bacterial species (Akkermansia muciniphila and 
Alistipes obesi) have been reported in lean individuals, and their abundance 
increased during dieting. These, as well as others (Blautia wexlerae and Bacteroides 
dorei), were the strongest predictors for weight loss when present in high abun-
dance at baseline in healthy people (26). Also, the effect of percutaneous endo-
scopic gastrostomy insertion on microbiota is unexplored as the only study nearly 
approaching this topic established that the insertion sites of these catheters in 
outpatients were frequently colonized (Candida albicans, Staphylococcus aureus, 
and Escherichia coli), without clinical consequences, although microbiota compo-
sition was not studied (27).

In conclusion, gastrointestinal symptoms are part of the disease symptoms, 
even if they may be underestimated in ALS. They are of clinical relevance since 
they may reduce food intake and influence survival and quality of life (28).
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METABOLIC DYSFUNCTION IN ALS

Energy homeostasis results from a correct balance between caloric intake and 
energy consumption. In ALS patients, the energy balance can be profoundly 
altered, resulting in a higher consumption than calorie intake. Indeed, during the 
disease course, patients tend to lose weight, muscle mass, and fat reserves (29). 
This condition can be due to direct disease effects, such as dysphagia, loss of 
appetite, and weakness in the upper limb limiting nutrition autonomy. 
Furthermore, a second fundamental mechanism is also evident, characterized by 
increased consumption of energy at rest, due to an increase in basal metabolism 
and an increased resting energy expenditure (REE). This “hypermetabolic state” 
can be present in about 50% of sporadic ALS cases (30), while it is higher in famil-
ial forms (31). Hypermetabolic patients with ALS have a greater level of lower 
motor neuron involvement, faster functional decline, and shorter survival; despite 
this, body weight and BMI changes did not differ between hypermetabolic and 
normometabolic patients with ALS.

Skeletal muscles have been proposed as a site of origin of this alteration. Some 
studies have shown that chronic denervation in ALS patients results in increased 
oxygen consumption. In addition, the skeletal muscles’ increase in energy demand 
can lead to a more significant fat mass depletion (32). These findings are sup-
ported by the higher prevalence of lower motoneuron involvement in hypermeta-
bolic patients, which also had a high prevalence of spinal onset disease (33). In 
the terminal stages of the disease, increased metabolism may be due to higher 
energy consumption by the respiratory muscles (34).

Several studies investigated the role of BMI in disease progression and survival, 
suggesting that high-energy reserves at onset can mitigate the increased energy 
demands occurring during the disease course. Two independent studies suggested 
a high BMI before the disease was related to better functional outcomes, lower 
incidence of the disease, and reduced mortality rate (35, 36). Patients with a BMI 
between 30 and 35 had been found to have a better survival outcome than those 
with a BMI out of this range (both higher and lower) during the early stages of the 
disease (37). For patients with BMI lower than 30, higher initial BMI predicted 
slower functional decline; on the contrary, for patients with BMI greater than 30, 
higher initial BMI predicted more rapid decline (35). 

Lipids

Hyperlipidemia is frequently observed in ALS, but the causes are still unclear; 
this condition could be partly explained by mitochondrial dysfunction (38) and 
increased food intake. While weight loss and malnutrition are prognostic factors 
that negatively impact ALS patients’ survival, hyperlipidemia is positively corre-
lated with survival. Dupuis et al. discovered that the frequency of hyperlipid-
emia, as revealed by increased plasma levels of total cholesterol or LDL, was 
two-fold higher in patients with ALS than in control subjects, demonstrating that 
abnormally elevated LDL/HDL ratio significantly increased survival by more than 
12 months, as if the increased availability of lipids in circulation is a protective 
factor (39). In line with the hypothesis of a protective role of elevated LDL/HDL 
ratio, statins have been associated with worse ALS patients’ outcomes (40). 
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Statins reduce LDL availability for skeletal muscles by inhibiting cholesterol syn-
thesis, leading to reduced muscle nutrients. Statins also reduce insulin resistance, 
which increases nutrient support for neuromuscular health (39). 

Neuroendocrine mechanisms

Metabolism changes in ALS patients can result from an incorrect response to cen-
tral and peripheral neuroendocrine mechanisms responsible for the entire body’s 
metabolism (41). The hypothalamus plays an essential role in regulating calorie 
intake and expenditure; indeed, the hypothalamus is affected by circulating hor-
mones and locally produced neuropeptides are able to mediate appetite and eat-
ing behavior. In this regard, a recent study (42) observed severe atrophy of the 
anterior and posterior parts of the hypothalamus, both in patients with sporadic 
ALS and symptomatic ALS mutations, unrelated to whole-brain volume atrophy 
or disease stage. Furthermore, the hypothalamic volume was directly correlated 
with BMI. For the hypothalamus’ physiological role, it has been proposed that its 
atrophy in ALS patients can cause alterations in food intake, an increase in energy 
expenditure, and, subsequently, a reduction in BMI. 

CHANGES IN GUT MICROBIOME COMPOSITION IN 
NEURODEGENERATION AND ALS

ALS is a very complex disease in which many conditions such as infections or 
antibiotic exposure, dysphagia, food replacement, motor dysfunction, and lack of 
movements, could impact the microbiome structure (43). Distinct microbial pro-
files have been found in many neurological disorders in which the modulation of 
microbiota (with fecal microbiota transplantation or probiotics administration) 
has proven to affect brain activity and disease progression (44–46). Evidence link-
ing GM and ALS, collected in animal models and humans, indicate a distinct 
microbial signature in ALS. The first substantial proof came from the mutant 
superoxide dismutase SOD1G93A mouse model, which exhibits a leaky gut, an 
increased number of abnormal intestinal Paneth cells, and altered microbial com-
munities with reduced levels of butyrate-producing bacteria (47). Interestingly, 
intestinal dysbiosis was identified in SOD1G93A mice well before the onset of 
motor dysfunction and immune cell activation (48). Zhang et al. demonstrated 
that mice treated with butyrate restored intestinal microbial homeostasis and 
decelerated ALS progression (49). Besides, studies on the C9orf72-mutant mice 
provided insights into the microbiota’s role in mediating neuroinflammation, 
since broad-spectrum antibiotics treatment as well as transplanting gut microflora 
attenuated inflammation and autoimmunity implicated in neural degeneration 
(50). Recently, Blacher and colleagues confirmed a pre-symptomatic distinct 
microbiome composition in transgenic SOD1 mice and identified commensals 
such as, Parabacteroides distasonis and Ruminococcus torques adversely affected the 
disease whereas Akkermansia muciniphila ameliorated the disease (51). Using a 
combination of untargeted metabolomic profiling and metagenomics, they found 
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that A. muciniphila increased nicotinamide (NAM) levels in the mice’s cerebrospi-
nal fluid, and NAM supplementation was able to improve the mice survival (43). 
Furthermore, the authors confirmed a distinct microbiome and metabolite con-
figuration in a small group of ALS patients compared to healthy controls (51). 

POSSIBLE MECHANISMS UNDERLYING THE EFFECT OF GUT 
MICROBIOME ON THE PATHOGENESIS OF ALS

Microbiota may influence the CNS and neuronal health either directly via the 
production of neuroactive metabolites (6) and toxins (7) or indirectly through 
modulation of immune response (52), dietary compounds, or drugs metabolism 
(53, 54) (Figure 1). For instance, gut microbes and their metabolites (e.g., SCFAs) 
can directly stimulate enterochromaffin cells to produce several neuropep-
tides  (e.g., peptide YY, neuropeptide Y, cholecystokinin) or neurotransmitters 
(e.g., serotonin), which can diffuse into the bloodstream, reach the brain, and 
influence CNS functions. The intestinal epithelium regulates the translocation of 
specific bacterial products (e.g., SCFAs, vitamins, or neurotransmitters) into the 
bloodstream, which, in turn, through the circulatory system, can spread to the 
CNS (55). In this way, circulating microbiota-derived metabolites, neuropeptides 
and neurotransmitters can enter the CNS and directly influence its neurobiology. 

Blecher et al. recently provided strong evidence for the microbial modulation 
of metabolites in ALS (51). Noting that the administration of A. muciniphila could 
improve the disease’s course in mice, the authors applied an untargeted serum 
metabolomic profiling to identify a possible mediator. Interestingly, A. muciniphila 
treated mice displayed increased serum levels of NAM, whose direct administra-
tion showed beneficial effects, probably through modulation of mitochondrial 
function and oxidative stress pathways. NAM is a precursor of coenzymes required 
in energy transduction, signaling pathways, and antioxidant mechanisms that 
may be impaired in ALS-related neurodegeneration (56). Notably, the authors 
confirmed their findings in ALS patients, showing lower NAM concentration in 
their serum and CSF, and reduced expression of NAM synthesis bacterial genes in 
their stool when compared with healthy subjects (51), supporting the idea that 
GM can produce compounds capable of permeating the blood-brain barrier and 
influence neuronal function (57).

 Another possible role of GM in ALS pathogenesis is the transformation of 
dietary and environmental compounds into neurotoxins. Beta-methylamino-l-
alanine (BMAA), a well-known neurotoxic amino acid found in the brains of ALS/
PDC patients from Guam (58), is thought to be produced in the gut from standard 
dietary compounds. For example, Cyanobacteria and other bacteria with anaero-
bic methylation functions can biosynthesize BMAA by methylation of L-serine 
and L-alanine. Enteric microbes can also convert amino acids such as L-tryptophan 
into bioactive molecules, such as indole, that once sulfonated can induce neuro-
inflammation and neuronal damage (59). GM can metabolize choline and 
L-carnitine into trimethylamine (TMA), and subsequently demethylate them into 
in dimethylamine (DMA) and formaldehyde (60). According to in vitro and in 
vivo studies, formaldehyde induces mitochondrial membrane damage, the 
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production of dangerous free radicals, and neuronal Tau protein misfolding and 
accumulation, thus contributing to ALS pathogenesis (61). Besides, the microbi-
ota can bring on the negative effect of environmental pollutants. Exposure to 
polycyclic aromatic hydrocarbons (PAHs) is considered a risk factor for ALS 
(62, 63), and gut microbes can reverse the endogenous detoxification process of 
PAHs regenerating them as Benzo[a]pyrene (BaP), whose neurotoxic effect has 
been demonstrated in zebrafish (64). Further, gut dysbiosis may be the cause of 
metabolic alterations observed in ALS (65). Interestingly, gut dysbiosis and, in 
particular, the reduction in Firmicutes has been associated with greater REE (66), 
a possible explanation for the increased energy use displayed by ALS patients. 

EFFECTS OF MICROBIOTA-INDUCED INFLAMMATION ON 
THE PATHOGENESIS OF ALS

An established key point of ALS pathogenesis is neuro-inflammation; it is related 
to a complex dysregulation of resident and peripheral immune cells (e.g., microg-
lia and astrocytes activation, T cells infiltration, and increased pro-inflammatory 
mediators) (67). The GM communicates with the intestinal immune system, con-
tributing to maintenance of immune tolerance and shaping immune responses 
during inflammation (68). Upon pathogen invasion or dysbiotic leaky gut, 
microbe-associated molecular patterns can stimulate innate cells to produce pro-
inflammatory cytokines that, in turn, activate adaptive immune cells, thus con-
tributing to the breakdown of immune homeostasis (69). Besides innate immune 
cells, intestinal microbes can directly affect the development and differentiation of 
the adaptive immune system’s main components, the CD4+ and CD8+ T cells (70). 
In addition, GM dysbiosis affects several brain biological processes. Germ-free 
mice and antibiotic-treated mouse models display a broad range of immunologi-
cal abnormalities, including altering density, morphology, and maturity of microg-
lia, suggesting that GM can influence both CNS immune cells’ development and 
functions (71). 

Interestingly, treatment with SCFAs restored the microglia density and mor-
phology in “depletion of regulatory T cells (DEREG)” mice. SCFAs such as butyric, 
propionic, and acetic acids are dietary fiber’s end-metabolism microbial products, 
mainly by Bacteroides and Firmicutes (72). They are known to mediate regulatory 
T cell (Tregs) induction through histone deacetylase inhibition. ALS is character-
ized by simultaneous activation of distinct lymphocyte subsets, Th1 and Th17, 
and a decrease of Tregs (73) that have a protective role as demonstrated in both 
mice and humans; a greater number of Tregs is associated with slow disease pro-
gression (74, 75). Tregs have been shown to directly differentiate macrophages 
from M1 to M2 state (76), and M2 microglia has been associated with the stable 
disease phase, whereas Th1 and M1 microglia predominate during the rapidly 
progressing phase suggesting a shift from protection to toxicity (Figure 1). Zhang 
et al. confirmed it, where butyrate supplementation appeared to reduce the clini-
cal features of ALS and the immunology abnormalities found in the G93A mice’s 
gut (49). Moreover, the longitudinal study by Figueroa-Romero et al. confirmed 
dysbiosis and spinal cord inflammation in SOD1G93A mice, defining the 



Mazzini L et al.150

chronological timeline, in which GM alterations precede circulating and CNS 
immune system expansion and activation, and symptom onset and progression 
(48). The study of Burberry et al. on C9orf72 null mice suggested that a dysbiosis 
characterized by immune-stimulating bacteria reduces mice survival by inducing 
detrimental peripheral inflammation and microglia activation, whereas antibi-
otic  or the microbiota transplantation improved symptoms (50). Intestinal 
 microbiota-driven proinflammatory signals may be essential for glia’s physiologi-
cal functioning, preserving neuronal health. Indeed, the gut microbiome regulates 
astrocyte activity through an aryl hydrocarbon receptor (AHR)-mediated mecha-
nism involving type I interferon signaling (77). 

CLINICAL EVIDENCE THAT GUT MICROBIOME 
MODULATION IMPACTS ALS

Studies in patients have begun to find a possible link between GM and ALS 
(Table 1), reporting controversial conclusions (78–87). The first studies  conducted 
were characterized by small and select patient cohorts, with less than ten 
 individuals, although they provided relatively consistent data in favor of dysbiosis 
in ALS (78–80). In these studies, the cause of pro-inflammatory dysbiosis is asso-
ciated with the microbial imbalance that could compromise the intestinal epithe-
lial barrier and promote immune/inflammatory responses with consequent 
alterations and a role in ALS pathogenesis. 

Mazzini et al., in 2020, published a prospective longitudinal study on the 
microbiota composition in ALS (81, 82), demonstrating that the GM of ALS 
patients are different compared to controls, independent of the degree of disabil-
ity. Moreover, they observed an increase of Cyanobacteria, noted for a neurotoxic 
action. Members of the Cyanobacteria phylum were significantly higher in the 
patients than in the controls, supporting the hypothesis that Cyanobacteria play a 
fundamental role in the pathogenesis of neurodegenerative diseases such as the 
ALS (84). Besides, Rowin et al. (79) and Nicholson et al. (85) observed that the 
glutamate metabolizer bacteria and the dominant butyrate-producing bacteria 
were, respectively, more abundant, and lower in ALS patients. In contrast, other 
studies showed that the fecal microbiome of patients with motoneuron disease 
was not significantly different from healthy controls (86, 87). However, a higher 
Firmicutes/Bacteroidetes ratio was associated with an increased risk of death and 
greater species diversity (87). These data support that the microbiota’s alterations 
could modulate the disease’s clinical course rather than representing a risk factor 
for its onset. 

CLINICAL CORRELATIONS AND POTENTIAL THERAPEUTIC 
APPROACHES

In the first longitudinal study assessing GM in ALS (82), disease progression coin-
cided with reduced microbial diversity, probably secondary to dietary changes, 
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TABLE 1 Studies investigating ALS microbiota

Authors, year, 
reference

Participants & 
Methods Results

Studies in favor of gut microbiota dysbiosis in ALS

Fang et al., 
2016 (78)

- case-control 
(6 P and 5 C)

- decreased Firmicutes/Bacteroidetes ratio at phylum level in P
- significant increased genus Dorea (harmful microorganisms) 

and significant reduced genus Oscillibacter, Anaerostipes, 
Lachnospiraceae (beneficial microorganisms) in P

Rowin et al., 
2017 (79)

- case-control 
(5 P and 96 C)

- the genera Lactobacillus, Bifidobacterium, and Odoribacter 
(glutamate metabolizers) are more abundant in P

Zhai et al., 
2019 (80)

- case-control 
(8 P and 8 C)

- the phylum Firmicutes/Bacteroidetes ratio, genus 
Methanobrevibacter, showed an enhancive tendency in P

- the relative abundance of beneficial micro-organisms 
(genera Faecalibacterium and Bacteroides) presented a 
significant decrease tendency in P

Mazzini et al., 
2018 (81); 

Di Gioia et al., 
2020 (82)

- prospective 
longitudinal 
study

- case-control 
(50 P and 50 C)

- probiotic 
supplementation

- GM of P is characterized by some differences compared 
to C, regardless of the disability degree

- the GM composition changed over the disease course 
(significant decrease in the number of the observed 
operational taxonomic units during the follow-up)

- probiotic supplementation has no effect on disease 
progression

Zeng, 2020 (83) - case-control 
(20 P and 20 C)

- over-representation of Bacteroidetes phylum and other 
bacterial genera in P

- Firmicutes and Megamonas genus down-regulated in P, 
with reduced Firmicutes/Bacteroidetes ratio

- increased species diversity associated with P compared to C

Nicholson 
et al., 2020 
(85) 

- case-control 
(66 P, 61 C and 
12 NC)

- relative abundance of the dominant butyrate-producing 
bacteria Eubacterium rectale and Roseburia intestinalis was 
lower in P compared to C

- total abundance of 8 dominant species capable of 
producing butyrate was lower in P, independently from age, 
sex or presence of constipation

Studies not in favor of gut microbiota dysbiosis in ALS

Brenner et al., 
2018 (86)

- case-control 
(25 P and 32 C)

- no substantial alteration of the GM composition
- significant differences only in the overall number of 

microbial species and the abundance of uncultured 
Ruminococcaceae in P

Ngo et al., 2020 
(87)

- case-control 
(49 P and 50 C)

- no correlation between metabolic and clinical features of P 
and the composition of their fecal microbiome

- greater risk for earlier death in P with increased richness 
and diversity of the microbiome and in those with greater 
Firmicutes to Bacteroidetes ratio

Overall, ALS seems to be characterized by the reduction of butyrate-producing bacteria, which are important for gut 
integrity and regulation of inflammation. However, some discrepancies are present. ALS, amyotrophic lateral sclerosis; 
C, controls; GM, gut microbiota; NC, neurodegenerative controls; P, ALS patients.
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highlighting that the interpretation of the results cannot be separated from diet 
monitoring and other factors that influence the microbiota (e.g., drug use, like 
antibiotics), and the stage of the disease. Furthermore, antibiotics alter the bal-
ance of intestinal microbial species (88); this opens a window on correlations 
between antibiotic use and unrelated diseases. Retrospective epidemiological 
studies in Swedish national registries showed that antibiotics, especially if 
repeated, were associated with an increased risk of developing ALS (89). These 
results, generated independently of the type of infection and the antibiotics, sug-
gest that this relation was not specific to a particular organ system. After testing 
several antibiotics classes, only beta-lactamase-sensitive penicillin use was signifi-
cantly associated with increased odds of developing ALS. The authors concluded 
that the most probable pathogenic mechanism was antibiotic-induced perturba-
tions of the intestinal microflora (89).

Although evidence on the GM’s role in ALS is increasing, the available studies 
are primarily exploratory; the number of cohorts remains small, which, in consid-
eration of the significant inter-individual variability and clinical heterogeneity that 
characterizes ALS, could preclude the identification of the relevant characteristics 
of the microbiome. These results show the importance of large cohorts and mul-
ticenter studies, allowing to consider intra-group differences in the ALS popula-
tion (genetically or phenotypically determined and concerning disease stage) as 
well as changes between groups between ALS and controls. Microbiota’s specific 
signature may be protective or toxic in different individuals and for diverse genetic 
backgrounds.

Regarding the implications for ALS patients’ treatment, a longitudinal analy-
sis of the microbiota composition after supplementation with placebo or probi-
otic treatment revealed a significant decrease in the observed operational 
taxonomic units number during the follow-up, with the predominance of neu-
rotoxic or pro-inflammatory microbial groups such as Cyanobacteria (82). 
Supplementation with probiotics, though having some effects on the intestinal 
microflora of ALS patients, did not substantially bring the composition closer to 
that of healthy subjects (82), implying more drastic interventions are required 
to reach such a target, as this type of treatment remains a minimal intervention 
in time and quantitative terms, concerning the abundance of species hosted by 
the intestine. In this regard, we are coordinating a multicenter controlled clinical 
trial in Italy that involves transplantation of fecal microbiota in 42 patients with 
ALS. Fecal microbiota transplantation is planned at baseline and after six 
months; an extensive immunological profile and microbiota characterization are 
ongoing (90).

Another relatively unexplored issue regards the fact that microbiota may also 
influence specific drug availability in ALS. Riluzole is significantly metabolized by 
GM (54, 90), which may explain interpatient variability in the drug plasma levels 
(92). It may be argued that similar effects would also be found for experimental 
drugs tested in ALS patients, which may contribute to hurdles in finding a cure 
for ALS. Finally, GM may influence non-motor symptoms in ALS such as depres-
sion, anxiety, and constipation through peptides and neurotransmitters that could 
directly impact mood (93), opening the possibility for treatment to improve at 
least the quality of life of ALS patients. 
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CONCLUSION

This chapter highlights the possible role of gut microbiome in the pathogenesis of 
ALS. Many studies on animal models of ALS have revealed changes in the intesti-
nal flora; however, most of the experimental evidence in humans has come from 
correlation research; many studies mainly describe the alterations of intestinal 
flora in ALS patients. Emerging evidence shows that GM can influence ALS through 
hypermetabolism and gastrointestinal abnormalities. Other interesting associa-
tions have been reported based on which microbiota could play a role in the inter-
face between environmental and lifestyle factors, and ALS. By studying these 
associations, we may gain more insight into the complex network of microbiome-
host interactions underlying the observed changes in ALS. Longitudinal studies 
integrating metagenomic, transcriptomic, and metabolomic approaches with clini-
cal parameters may elucidate the relationships between established risk modifiers, 
gut microbiota, and ALS. Although we still need to establish a “cause and effect” 
relationship between GM and ALS, the strategy of regulating intestinal microbial 
flora to treat this devastating disease is intriguing. Further rigorous studies target-
ing GM may develop novel approaches for the prevention and treatment of ALS.
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