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Summary

Clinical characteristics
Friedreich ataxia (FRDA) is characterized by slowly progressive ataxia with onset usually before age 25 years 
(mean age at onset: 10-15 yrs). FRDA is typically associated with dysarthria, muscle weakness, spasticity 
particularly in the lower limbs, scoliosis, bladder dysfunction, absent lower-limb reflexes, and loss of position 
and vibration sense. Approximately two thirds of individuals with FRDA have cardiomyopathy, up to 30% have 
diabetes mellitus, and approximately 25% have an "atypical" presentation with later onset or retained tendon 
reflexes.

Diagnosis/testing
The diagnosis of FRDA is established in a proband by detection of biallelic pathogenic variants in FXN. The most 
common type of variant, which is observed on both alleles in approximately 96% of individuals with FRDA, is an 
abnormally expanded GAA repeat in intron 1 of FXN. The remaining individuals with FRDA are compound 
heterozygotes for an abnormally expanded GAA repeat in the disease-causing range on one allele and another 
intragenic pathogenic variant on the other allele.

Management
Treatment of manifestations: Clinical management guidelines have been published. Prostheses; walking aids and 
wheelchairs for mobility; speech, occupational, and physical therapy; pharmacologic agents for spasticity; 
orthopedic interventions for scoliosis and foot deformities; hearing devices for auditory involvement; dietary 
modifications and placement of a nasogastric tube or gastrostomy for dysphagia; antiarrhythmic agents, anti-
cardiac failure medications, anticoagulants, and pacemaker for cardiac disease; dietary modification, oral 
hypoglycemic agents or insulin for diabetes mellitus; antispasmodics for bladder dysfunction; continuous 
positive pressure for obstructive sleep apnea; psychological support, both pharmacologic and counseling.
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Prevention of secondary manifestations: Active management of spasticity to prevent permanent contractures; 
aggressive treatment of scoliosis to prevent cardiopulmonary complications; treatment of diabetes to avoid 
complications related to inadequate treatment; treatment of cardiac complications to avoid arrhythmias; 
treatment of sleep apnea to present neurologic and cardiopulmonary complications of untreated sleep apnea.

Surveillance: At least annual assessment of overall status; examination for complications including spasticity, 
scoliosis, and foot deformity; annual EKG, echocardiogram, and fasting blood sugar to monitor for diabetes 
mellitus; hearing assessment every two to three years; a low threshold for sleep study to investigate for 
obstructive sleep apnea.

Agents/circumstances to avoid: Environments that place an individual at risk for falls such as rough surfaces for 
ambulant individuals; excessive use of alcohol, which can increase ataxia; medications (e.g., isoniazid, 
nitrofurantoin) that are known to cause nerve damage.

Therapies under investigation: Idebenone, histone deacetylase inhibitors, EPI-743, PPAR gamma agonists, 
nicotinamide, resveratrol, thiamine.

Genetic counseling
FRDA is inherited in an autosomal recessive manner. Each sib of an affected individual has a 25% chance of 
being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of having no pathogenic 
variant. Carrier testing of at-risk relatives, prenatal testing for pregnancies at increased risk, and preimplantation 
genetic testing are possible if both FXN pathogenic variants have been identified in an affected family member.

Diagnosis

Suggestive Findings
Friedrich ataxia (FRDA) should be suspected in individuals with a combination of the following clinical 
features and family history:

Clinical features

• Neurologic findings, typically with onset before age 25 years*

⚬ Progressive ataxia of gait and limbs
⚬ Dysarthria
⚬ Decrease in/loss of position sense and/or vibration sense in lower limbs
⚬ Pyramidal weakness of the legs, extensor plantar responses

*Note: In atypical cases, onset may be delayed; see Atypical Presentations, Late-onset FRDA and very 
late-onset FRDA.

• Musculoskeletal features
⚬ Muscle weakness
⚬ Scoliosis
⚬ Pes cavus

• Hypertrophic non-obstructive cardiomyopathy

• Endocrinologic features
⚬ Glucose intolerance
⚬ Diabetes mellitus
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• Optic atrophy and/or deafness

Family history consistent with autosomal recessive inheritance

Note: Absence of a family history of autosomal recessive inheritance does not preclude the diagnosis.

Establishing the Diagnosis
The diagnosis of Friedreich ataxia is established in a proband by detection of biallelic pathogenic variants in 
FXN (see Table 1).

Allele sizes. Four classes of alleles are recognized for the GAA repeat sequence in intron 1 of FXN [Cossée et al 
1997, Montermini et al 1997a, Sharma et al 2004]; note that an affected individual with a 56 GAA repeat allele 
has been reported by Tai et al [2015], which makes the upper limit of the mutable normal reference range less 
definitive.

• Normal alleles. 5-33 GAA repeats. More than 80%-85% of alleles contain fewer than 12 repeats (referred 
to as short normal) and approximately 15% have 12-33 repeats (long normal). Normal alleles with more 
than 27 GAA repeats are rare.

• Mutable normal (premutation) alleles. 34-65 GAA repeats. Although the exact frequency of these alleles 
has not been formally determined, they likely account for fewer than 1% of FXN alleles.

• Full-penetrance (disease-causing expanded) alleles. 66 to approximately 1,300 GAA repeats. The 
majority of expanded alleles contain between 600 and 1,200 GAA repeats [Campuzano et al 1996, Dürr et 
al 1996, Filla et al 1996, Epplen et al 1997].

• Borderline alleles. 44-66 GAA repeats. The shortest repeat length associated with disease (i.e., the exact 
demarcation between normal and full-penetrance alleles) has not been clearly determined (see 
Penetrance).

Rare alleles of variant structure. In contrast to the alleles discussed above in which the GAA trinucleotides are 
perfect repeats, in rare pathogenic alleles the GAA repeats are not in perfect tandem order but rather are 
interrupted by other nucleotides. Such "interrupted FXN alleles" differ in length and types of nucleotides in the 
interruption, but they are typically close to the 3' end of the GAA repeat tract (see Molecular Genetics).

Note: (1) Molecular genetic testing does not determine presence or absence of nucleotide interruptions of the 
GAA tract. (2) These rare interrupted alleles may be associated with LOFA or VLOFA [Stolle et al 2008] (see 
Genotype-Phenotype Correlations).

Interpretation of test results. The exact demarcation between normal and full-penetrance alleles remains 
poorly defined. While the risk for phenotypic expression with borderline alleles is increased, it is not possible to 
offer precise risks. Therefore, the interpretation of test results in an individual with a large GAA expanded allele 
of full penetrance and a second allele of fewer than 100 GAA repeats may be difficult.

Molecular genetic testing approaches can include single-gene testing and use of a multigene panel.

Single-gene testing

• Testing is targeted for the abnormally expanded GAA repeat in intron 1 of FXN.
• If only one abnormally expanded allele is identified, sequence analysis of FXN is performed next, followed 

by deletion/duplication analysis if no pathogenic inactivating variant is found on sequencing.

A multigene panel that includes FXN and other genes of interest (see Differential Diagnosis) may also be 
considered. While this is not recommended as a first-line strategy in typical cases, it may help identify some 
affected individuals with atypical presentations. To date, next-generation sequencing strategies cannot identify 
expanded repeats and therefore will not diagnose the majority of individuals with FRDA. Note: (1) The genes 
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included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are 
likely to change over time. (2) Some multigene panels may include genes not associated with the condition 
discussed in this GeneReview; thus, clinicians need to determine which multigene panel is most likely to identify 
the genetic cause of the condition while limiting identification of variants of uncertain significance and 
pathogenic variants in genes that do not explain the underlying phenotype. (3) In some laboratories, panel 
options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that 
includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/
duplication analysis, and/or other non-sequencing-based tests.

For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic 
tests can be found here.

Table 1. Molecular Genetic Testing Used in Friedreich Ataxia (FRDA)

Gene 1 Method Proportion of Pathogenic Variants 2 

Identified by Method

FXN

Targeted analysis for GAA repeat expansion 96% 3

Sequence analysis 4, 5 4% 3

Gene-targeted deletion/duplication 
analysis 6 See footnote 7.

Unknown 8 NA

1. See Table A. Genes and Databases for chromosome locus and protein.
2. See Molecular Genetics for information on variants detected in this gene.
3. Approximately 96% of individuals with FRDA have an abnormally expanded GAA repeat in intron 1 of FXN on both alleles 
[Campuzano et al 1996, Monrós et al 1997, Galea et al 2016]. The remainder of individuals with FRDA have an abnormally expanded 
GAA repeat in the disease-causing range in one FXN allele and another intragenic pathogenic variant in the other allele.
4. Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants 
may include missense, nonsense, and splice site variants and small intragenic deletions/insertions; typically, exon or whole-gene 
deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.
5. Sequence analysis of exons and flanking regions will identify FXN pathogenic variants located outside the GAA repeat region. 
Nonsense, missense, frameshift, and splicing defect variants have been identified (see Molecular Genetics).
6. Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include a range of 
techniques such as quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted 
microarray designed to detect single-exon deletions or duplications.
7. Rare affected individuals have one allele with either a large intragenic deletion or whole-gene deletion of FXN and the second allele 
with a full-penetrance expanded GAA repeat [Zühlke et al 2004, Anheim et al 2012, Hoffman-Zacharska et al 2016]. See Molecular 
Genetics.
8. Among individuals who satisfy the clinical diagnostic criteria for FRDA and who have normal vitamin E levels, fewer than 1% have 
no GAA expansion in either allele of FXN. It is possible that these individuals have pathogenic variants at a locus distinct from FXN 
[Dürr et al 1996, McCabe et al 2000, Christodoulou et al 2001, Marzouki et al 2001]. However, no other loci have been convincingly 
linked to the FRDA phenotype.

Clinical Characteristics

Clinical Description
Typical Friedreich ataxia is observed in about 75% of affected individuals and atypical presentations (with later 
onset or retained tendon reflexes) are observed in about 25%.

Typical Friedreich Ataxia
Neurologic manifestations. Individuals with typical Friedreich ataxia (FRDA) develop progressive ataxia with 
onset from early childhood through to early adulthood, starting with poor balance when walking, followed by 
slurred speech and upper-limb ataxia. The mean age at onset of symptoms is ten to 15 years [Delatycki et al 
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1999b]; onset can be as early as age two years and as late as the eighth decade. Gait ataxia, caused by a 
combination of spinocerebellar degeneration and loss of joint-position sense (proprioception), is the earliest 
symptom in the vast majority. The poor balance is accentuated when visual input is eliminated, such as in 
darkness or when the eyes are closed (Romberg sign). Ankle and knee jerks are generally absent, and plantar 
responses are up-going.

Within five years of symptom onset, most individuals with FRDA exhibit "scanning" dysarthria, lower-extremity 
weakness, and diminished or absent joint-position and vibration sense distally ‒ neurologic manifestations that 
result from progressive degeneration of the dorsal root ganglia, posterior columns, corticospinal tracts, dorsal 
spinocerebellar tracts of the spinal cord, and cerebellum. Involvement of peripheral sensory and motor neurons 
results in a mixed axonal peripheral neuropathy.

Muscle weakness is often present and is most prominent in hip extensors and abductors; as disease advances, 
distal limb muscle weakness and wasting become evident.

Spasticity in the lower limbs is common and can be significant, affecting foot plantar flexors and inverters to a 
greater extent than dorsiflexors and everters. Thus, in the late stages of disease, equinovarus deformity is 
commonly seen [Delatycki et al 2005] and may result in contractures ‒ more commonly in nonambulatory 
affected individuals [Milne et al 2016] ‒ and significant morbidity. Pes cavus is common (55%) but generally 
causes little problem for affected individuals. Restless leg syndrome is common in individuals with Friedreich 
ataxia, affecting 32%-50% of individuals in two studies [Frauscher et al 2011].

Scoliosis is present in approximately two thirds of individuals with FRDA when assessed clinically and 100% 
when assessed radiographically. A study found that 49 of 77 individuals with FRDA had scoliosis; ten were 
treated with a brace and 16 required spinal surgery [Milbrandt et al 2008].

Autonomic disturbance becomes more common with disease progression. The most common manifestations are 
cold, cyanosed feet; bradycardia is less common.

Electrodiagnostic findings. Nerve conduction studies generally show a motor nerve conduction velocity of 
greater than 40 m/s with reduced or absent sensory nerve action potential with an absent H reflex.

Central motor conduction time is abnormal after transcranial magnetic stimulation [Brighina et al 2005].

Speech. Dysarthria, present in the majority of individuals with FRDA, is generally of three types: mild 
dysarthria, increased velopharyngeal involvement manifest as hypernasality, and increased laryngeal dysfunction 
manifest as increased strained-strangled vocal quality [Folker et al 2010]. Dysarthria becomes worse as the 
disease progresses with the main changes seen over time being in speaking rate and utterance duration [Rosen et 
al 2012].

Mild dysphonia characterized by hoarseness (combined roughness and breathiness), increased strain, and 
altered pitch variability is also seen [Vogel et al 2017].

Swallowing. Dysphagia is common in FRDA with 92% of individuals reporting issues with swallowing [Vogel et 
al 2014]. Dysphagia in FRDA relates to oropharyngeal incoordination, weakness, and spasticity.

Hypertrophic cardiomyopathy, defined as increased thickness of the interventricular septum, is present in 
about two thirds of individuals with FRDA [Delatycki et al 1999a]. Echocardiographic evaluation may reveal left 
ventricular hypertrophy that is more commonly asymmetric than concentric [Dutka et al 2000, Bit-Avragim et al 
2001, Koc et al 2005]. When more subtle cardiac involvement is sought by methods such as tissue Doppler 
echocardiography, an even larger percentage of individuals have detectable abnormalities [Dutka et al 2000, 
Mottram et al 2011]. Between 12% and 20% of individuals have reduced ejection fraction [Regner et al 2012a, 
Weidemann et al 2012] and longitudinal strain is commonly reduced [St John Sutton et al 2014].
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Later in the disease course, the cardiomyopathy may become dilated. Progressive systolic dysfunction is 
common [Kipps et al 2009] and reduction in left ventricular wall thickness is often seen as the disease progresses 
[Rajagopalan et al 2010]. A longitudinal study identified two groups; a "low risk" group (approximately 80%) 
with normal ejection fraction that declined slowly and remained in the normal range and a "high risk" group 
(approximately 20%) in whom ejection fraction declined into the abnormal range and was associated with high 
mortality [Pousset et al 2015]. Those in the "high risk" group had longer GAA expansions on the shorter allele. 
The degree of neurologic impairment did not predict whether an affected individual would have stable or rapid 
progression of cardiomyopathy.

Electrocardiography (EKG) is abnormal in the vast majority, with T wave inversion, left axis deviation, and 
repolarization abnormalities being most commonly seen [Dutka et al 1999].

Symptoms related to cardiomyopathy usually occur in the later stages of the disease [Dutka et al 1999] but in 
rare instances may precede ataxia [Alikaşifoglu et al 1999, Leonard & Forsyth 2001]. Quercia et al [2010] 
established the diagnosis of FRDA in a young child evaluated for sudden death. Subjective symptoms of 
exertional dyspnea (40%), palpitations (11%), and anginal pain may be present in moderately advanced disease. 
Arrhythmias (especially atrial fibrillation) and congestive heart failure frequently occur in the later stages of the 
disease and are the most common cause of mortality [Tsou et al 2011]. Coronary artery disease may occur and 
should be considered if there is angina and/or sudden deterioration in cardiac function [Giugliano & Sethi 
2007].

Urinary issues. Bladder symptoms including urinary frequency and urgency were reported by 41% of 
individuals in one study [Delatycki et al 1999a]. A study of 158 individuals with FRDA revealed lower urinary 
tract symptoms in 82% with impact on quality of life in 22% of those [Musegante et al 2013]. Of 28 who 
underwent urodynamic studies, all had normal serum creatinine and four had upper urinary tract dilatation.

Sleep-disordered breathing. Sleep-disordered breathing and sleep apnea are more prevalent in those with 
FRDA than in the healthy population. There is a minimum prevalence of 21% of obstructive sleep apnea 
compared to an incidence of about 5% in the general population [Corben et al 2013].

Diabetes mellitus occurs in up to 30% of individuals with FRDA [Cnop et al 2013]. Impaired glucose tolerance 
is seen in up to an additional 49% [Ristow 2004, Cnop et al 2012]. Non-diabetic individuals with FRDA 
demonstrate high insulin responsiveness to oral glucose testing and low insulin sensitivity [Isaacs et al 2016].

Ophthalmic manifestations. Optic nerve atrophy, often asymptomatic, occurs in approximately 25% of 
individuals with FRDA. Reduced visual acuity was found in 13% in one study [Dürr et al 1996]. Study of the 
anterior and posterior visual pathways in FRDA by visual field testing and optical coherence tomography, 
pattern visual evoked potentials, and diffusion-weighted imaging revealed that all individuals studied had optic 
nerve abnormalities, but only 5/26 (19%) had related symptoms [Fortuna et al 2009]. Progressive diminution of 
contrast acuity is typical with disease progression [Seyer et al 2013].

Abnormal extraocular movements include irregular ocular pursuit, dysmetric saccades, saccadic latency, square 
wave jerks, ocular flutter, and marked reduction in vestibulo-ocular reflex gain and increased latency [Fahey et al 
2008]. Horizontal and vertical gaze palsy does not occur.

Hearing loss. Sensorineural hearing loss occurs in 13% of individuals with FRDA [Dürr et al 1996]. Auditory 
neuropathy may occur and difficulty hearing in background noise is common [Rance et al 2008].

Cognitive skills. While cognition is generally not impaired in FRDA, motor and mental reaction times can be 
significantly slowed [Wollmann et al 2002, Corben et al 2006]. Motor planning is markedly impaired [Corben et 
al 2010, Corben et al 2011]. The intelligence profile of individuals with FRDA is characterized by concrete 
thinking and poor capacity in concept formation and visuospatial reasoning with reduced speed of information 
processing [Mantovan et al 2006]. Problems with attention and working memory have also been demonstrated 
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[Klopper et al 2011]. Motor overflow is also more prevalent in FRDA than in controls [Low et al 2013]. Those 
with earlier onset and larger FXN intron 1 GAA repeats tend to have more severe cognitive difficulties than 
those with later onset and smaller GAA repeats [Nachbauer et al 2014]. Impairment of inhibition and cognitive 
flexibility was identified in individuals with FRDA on the Haylings Sentence Completion Task [Corben et al 
2017].

Bone mineral density. A study of 28 individuals with FRDA identified that six (21.4%) had reduced bone 
mineral density for age in at least one site assessed [Eigentler et al 2014]. There was a negative correlation 
between disease severity and femoral neck bone density. Females were more likely to have clinical fractures than 
males but no association was found between bone mineral density and fracture occurrence. In fact, all fractures 
occurred in those with a z score better than −2.

Other. Inflammatory bowel disease and growth hormone deficiency are more common in individuals with 
FRDA than the general community [Shinnick et al 2016].

Progression. The rate of progression of FRDA is variable. The average time from symptom onset to wheelchair 
dependence is ten years [Dürr et al 1996, Delatycki et al 1999a]. A number of studies have found that 
progression is more rapid in those with earlier disease onset [Reetz et al 2015, Tai et al 2015, Patel et al 2016].

In a large study conducted in the early 1980s, the average age at death was 37 years [Harding 1981]. In a more 
recent study, the mean and median age of death was 36.5 years and 30 years, respectively [Tsou et al 2011]. 
Survival into the sixth and seventh decades has been documented. The most common cause of death was cardiac 
(38/61), with the remainder (17/61) being non-cardiac (most commonly pneumonia) or unknown cause (6/61) 
[Tsou et al 2011].

Pregnancy. A study of 65 pregnancies in 31 women with FRDA found no increase in the rate of spontaneous 
miscarriage, preeclampsia, prematurity, or cesarean section delivery [Friedman et al 2010]. Worsening, 
improving, or unchanged symptoms during pregnancy were each reported by approximately one third of women 
with FRDA.

Neuroimaging. MRI is often normal in the early stages of FRDA. With advanced disease, atrophy of the cervical 
spinal cord and cerebellum may be observed [Bhidayasiri et al 2005]. Atrophy of the superior cerebellar 
peduncle, the main outflow tract of the dentate nucleus, may also be seen [Akhlaghi et al 2011]. Cervical spinal 
cord size correlates with disease severity as measured by the Friedreich Ataxia Rating Scale [Chevis et al 2013].

A voxel-based morphometry study showed a symmetric volume loss in the dorsal medulla, infero-medial 
portions of the cerebellar hemispheres, rostral vermis, and dentate region [Della Nave et al 2008]. No volume 
loss in cerebral hemispheres was observed. Lower fractional anisotropy, higher mean diffusivity, and increased 
radial diffusivity compared to controls have been found in the dentatorubral, dentatothalamic, and 
thalamocortical tracts in individuals with FRDA [Akhlaghi et al 2014].

Reduced N-acetylaspartate in the cerebellum has been demonstrated by 1H-MRS [Iltis et al 2010] and increased 
diffusion weighted imaging may be present in a number of brain white matter tracts [Rizzo et al 2011].

Atypical Presentations
Approximately 25% of individuals homozygous for full-penetrance GAA expansions in FXN have atypical 
findings [Dürr et al 1996] that include the following.

Late-onset FRDA (LOFA) and very late-onset FRDA (VLOFA). In approximately 15% of individuals with 
FRDA, onset is later than age 25 years. In individuals with LOFA, the age of onset is 26-39 years; and, in VLOFA, 
onset is after age 40 years [Bidichandani et al 2000, Bhidayasiri et al 2005]. The oldest reported age of onset 
among individuals homozygous for the GAA expansion is 80 years [Alvarez et al 2013].
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A study of 44 individuals with LOFA and 30 individuals with VLOFA found that dysarthria, absent tendon 
reflexes, extensor plantar reflexes, weakness, amyotrophy, ganglionopathy, cerebellar atrophy, scoliosis, 
cardiomyopathy, and functional disability were milder, and GAA expansion on the smaller allele shorter, than in 
individuals with typical-onset FRDA [Lecocq et al 2016]. Another study of 18 individuals with LOFA reported 
similar findings [Martinez et al 2017].

• FRDA with retained reflexes (FARR) accounts for approximately 12% of individuals who are 
homozygous for the GAA expansion [Coppola et al 1999]. Some individuals with FARR show brisk 
tendon reflexes that can be accompanied by clonus. Tendon reflexes may be retained for more than ten 
years after the onset of the disease. FARR usually has a later age of onset and lower incidence of secondary 
skeletal involvement and cardiomyopathy [Coppola et al 1999].

• FRDA in Acadians. Montermini et al [1997b] showed that Acadians with FRDA have a later age of onset 
(on average 3.0 years later than those with typical FRDA) and of wheelchair confinement, and a much 
lower incidence of cardiomyopathy (48% vs 82%).

Spastic paraparesis without ataxia. Individuals who have biallelic full-penetrance GAA expansions may rarely 
present with spastic gait disturbance without gait or limb ataxia. These individuals usually have hyperreflexia 
and a later age of onset (on average 5.8 years later than those with typical FRDA); they develop ataxia with time 
[Montermini et al 1997b, Gates et al 1998, Castelnovo et al 2000, Lhatoo et al 2001, Badhwar et al 2004].

Other rare presentations of FRDA

• Chorea and pure sensory ataxia [Berciano et al 1997, Hanna et al 1998, Zhu et al 2002]
• Apparently isolated cardiomyopathy, with ataxia only becoming evident some time later [Leonard & 

Forsyth 2001]

Genotype-Phenotype Correlations
Despite the general genotype-phenotype correlations described below, it is not possible to precisely predict the 
specific clinical outcome in any individual based on genotype. The remaining variability in individuals with 
FRDA may be caused by genetic background (e.g., Acadian individuals, the presence of the p.Cys282Tyr variant 
in HFE [Delatycki et al 2014]), somatic heterogeneity of the expanded GAA repeat [Montermini et al 1997b, 
Sharma et al 2004, De Biase et al 2007], and other unidentified factors.

Biallelic Pathogenic GAA Repeat Expansions
GAA repeat size. The age of onset, presence of leg muscle weakness/wasting, duration until wheelchair use, and 
prevalence of cardiomyopathy, pes cavus, and scoliosis have all shown statistically significant inverse correlations 
with the size of the expanded GAA repeat [Dürr et al 1996, Filla et al 1996, Monrós et al 1997, Montermini et al 
1997b]. The size of the shorter of the two expanded pathogenic GAA repeat alleles shows better correlation than 
the larger repeat allele and accounts for approximately 50% of the variation in age of onset [Filla et al 1996].

La Pean et al [2008] found that age at diagnosis is a better predictor of disease severity – including disease 
progression and association with scoliosis and cardiomyopathy. This suggests that factors other than the repeat 
length (e.g., other genetic, epigenetic, and environmental variables) play a role in determining the severity of 
disease.

A longitudinal natural history study using a large heterogeneous cohort stratified by the size of the shorter of the 
two expanded alleles showed that individuals with fewer than 300 GAA repeats progressed more slowly 
compared to individuals with longer repeat sizes [Regner et al 2012b]. Similarly, Metz et al [2013] found that the 
rate of disease progression as a function of the length of the shorter of the two expanded alleles was most 
prominent with alleles containing fewer than 600 GAA repeats.
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Late-onset FRDA (LOFA) and very late-onset FRDA (VLOFA)

• Individuals with LOFA (i.e., age of onset >25 years) frequently exhibit fewer than 500 GAA repeats in at 
least one of the expanded alleles [Bhidayasiri et al 2005].

• Individuals with VLOFA (i.e., age of onset >40 years) usually have fewer than 300 GAA repeats in at least 
one of the expanded alleles [Bidichandani et al 2000, Berciano et al 2005]. However, Bidichandani et al 
[2000] reported an individual with VLOFA who had biallelic expansions with greater than 800 GAA 
repeats on each allele, underscoring the inability to predict the clinical outcome in each individual.
In the full penetrance range, there are uncommon FXN alleles that are interrupted by other nucleotides 
thereby disrupting a section of the long tract of tandem GAA repeats (see Molecular Genetics). Counting 
only the number of GAA repeats in the uninterrupted section, such alleles tend to be shorter in length 
(equivalent in length to alleles of 100-300 GAA repeats), and are often associated with LOFA/VLOFA. 
Stolle et al [2008] reported six people with such interrupted alleles (with a conventional expanded GAA 
repeat variant containing >600 repeats in the other FXN allele) whose onset ranged from age 34 to 75 
years. It is not clear if the milder FRDA phenotype results from the interruptions per se, or the fact that 
interrupted alleles are often short, or both.

FRDA in Acadians. Despite the milder phenotype in this population, no significant differences were found 
either in the size of the GAA expansions or in the pathogenic sequence variants of FXN compared to individuals 
with typical FRDA [Montermini et al 1997b]. This finding supports the existence of other genetic modifiers of 
disease severity.

Spastic paraparesis without ataxia may be seen in those with smaller expanded alleles [Berciano et al 2002], or 
in association with the p.Gly130Val missense variant [McCabe et al 2002].

Cardiomyopathy is more frequently seen in individuals with a higher number of GAA repeats [Dürr et al 1996, 
Filla et al 1996, Monrós et al 1997]:

• Isnard et al [1997] found echocardiographic evidence of left ventricular hypertrophy in 81% of those with 
FRDA with GAA repeat lengths greater than 770 repeats and in only 14% of those with repeat lengths of 
fewer than 770 repeats.

• Significant correlation is seen between the size of the GAA expansion and various diastolic parameters 
[Mottram et al 2011] as well as the thickness of the interventricular septum and left ventricular wall 
[Isnard et al 1997, Dutka et al 1999, Bit-Avragim et al 2001]. Pousset et al [2015] found that longer GAA 
expansions on the shorter allele were associated with greater progression to low ejection fraction and 
poorer resultant survival.

• Montermini et al [1997b] and Delatycki et al [1999b] showed that the presence of cardiomyopathy 
correlated with disease severity as defined by age of onset.

• Cuda et al [2002] described an individual with particularly severe early childhood-onset cardiac 
hypertrophy that preceded the onset of ataxia; the individual had biallelic large GAA expansions and 
additionally had a pathogenic variant in TNNT2, the gene encoding cardiac troponin T.

Diabetes mellitus or abnormal glucose tolerance does not show a clear-cut correlation with the size of the 
GAA expansion. Filla et al [1996] found that individuals with diabetes mellitus tend to have larger repeat 
lengths; in a larger cohort, however, Dürr et al [1996] did not find significant correlation either with the size of 
the GAA expansion or with disease duration. Despite the lack of correlation with the GAA expansion size, 
Delatycki et al [1999b] found a correlation between the incidence of diabetes mellitus and earlier age at onset. A 
study of glucose metabolism in individuals with FRDA identified a correlation between longer GAA repeat 
length on the shorter allele and higher serum glucose and hemoglobin A1C concentrations [Greeley et al 2014].
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Compound Heterozygotes for a GAA Expansion and an Intragenic Inactivating 
Pathogenic Variant or Deletion
A study of 111 compound heterozygotes identified three subgroups based on the pathogenic non-expansion 
variant: (1) null variant (no frataxin produced), (2) moderate/strong impact on frataxin function and (3) 
minimal impact of frataxin function [Galea et al 2016]. Compared to those with biallelic GAA expansions, 
subgroup 1 had earlier onset and higher incidence of diabetes whilst those with biallelic GAA expansions had a 
higher rate of cardiomyopathy than any of the three compound heterozygous subgroups. Another study found 
an almost tenfold increase in diabetes in compound heterozygotes compared to those with biallelic GAA repeats 
[Greeley et al 2014].

Compound Heterozygotes for a Full-Penetrance GAA Expansion and a 
Borderline "Mutable" Allele
Individuals with somatically unstable, borderline alleles often have LOFA/VLOFA, mild and gradually 
progressive disease, and normal reflexes/hyperreflexia [Sharma et al 2004].

Penetrance
Penetrance is complete in those with biallelic full-penetrance GAA repeat expansions and in compound 
heterozygotes for a full-penetrance GAA expansion in one allele and a FXN pathogenic variant in the other 
allele. However, because of wide variability in the size of pathogenic expanded alleles, and for other unknown 
reasons, onset can range from before age five years to after age 50 years. This variability in age-dependent 
penetrance can occasionally occur within the same sibship.

The allele size at the lower end of the pathogenic allele range has not been clearly defined in FRDA. It is possible 
that reduced penetrance is associated with borderline alleles and expanded alleles containing fewer than 100 
GAA repeats. Individuals with a borderline allele and a full-penetrance allele may develop LOFA/VLOFA. 
Sharma et al [2004] showed that somatic instability of the borderline allele was required for clinical expression of 
the FRDA phenotype; and, therefore, alleles with fewer than 37 GAA repeats are unlikely to cause disease. 
Although the exact frequency of borderline alleles has not been formally determined, they account for fewer 
than 1% of FXN alleles.

Anticipation
Friedreich ataxia (FRDA) is inherited in an autosomal recessive manner; therefore, anticipation is not observed 
because the disease is typically not observed in more than one generation.

Prevalence
The prevalence of FRDA is 2-4:100,000. The carrier frequency is 1:60-100.

FRDA is the most common inherited ataxia in Europe, the Middle East, South Asia (Indian subcontinent), and 
North Africa.

FRDA has not been documented in Southeast Asians, in sub-Saharan Africans, or among Native Americans. A 
lower-than-average prevalence of FRDA is noted in Mexico.

Genetically Related (Allelic) Disorders
No phenotypes other than the typical and atypical clinical presentations of FRDA discussed in this GeneReview 
are known to be associated with pathogenic variants in FXN.
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Differential Diagnosis
Peripheral neuropathy

• Friedreich ataxia (FRDA) may be confused with Charcot-Marie-Tooth type 1 (CMT1), a demyelinating 
peripheral neuropathy, and Charcot-Marie-Tooth type 2 (CMT2), an axonal (non-demyelinating) 
peripheral neuropathy. Some individuals with CMT present in childhood with clumsiness, areflexia, and 
minimal distal muscle weakness. In children with FRDA who have not developed dysarthria or extensor 
plantar responses, the diagnosis of CMT may be difficult to exclude solely on clinical findings. Inheritance 
of CMT can be autosomal dominant, autosomal recessive, or X-linked. See CMT Overview.

• Spinocerebellar ataxia with axonal neuropathy (SCAN1) is characterized by ataxia, axonal sensorimotor 
polyneuropathy, distal muscular atrophy, pes cavus, and steppage gait – signs that may collectively mimic 
FRDA. SCAN1 is caused by biallelic pathogenic variants in TDP1, the gene encoding tyrosyl-DNA 
phosphodiesterase 1, a topoisomerase I-dependent DNA damage repair enzyme [El-Khamisy et al 2005]. 
Inheritance is autosomal recessive.

Ataxia

• Ataxia with vitamin E deficiency (AVED) (caused by biallelic pathogenic variants in TTPA, encoding 
alpha-tocopherol transfer protein), abetalipoproteinemia, or other fat malabsorptive conditions should be 
considered in individuals with the FRDA phenotype without GAA expansions [Cavalier et al 1998, 
Hammans & Kennedy 1998]. Most individuals with AVED fulfill the diagnostic criteria for FRDA, 
although titubation and hyperkinesia are more frequently seen in AVED than in FRDA [Cavalier et al 
1998]. The prevalence of cardiomyopathy is much less in those with AVED compared to those with FRDA. 
It is important to differentiate FRDA from AVED because, unlike FRDA, AVED can be effectively treated 
with continuous lifelong vitamin E supplementation. Serum concentration of vitamin E and lipid-adjusted 
vitamin E may also be used to differentiate AVED from FRDA [Feki et al 2002]. Inheritance of TTPA-
related AVED is autosomal recessive.

• Ataxia with oculomotor apraxia type 1 (AOA1; oculomotor apraxia and hypoalbuminemia; early-onset 
cerebellar ataxia with hypoalbuminemia; OMIM 208920) is characterized by childhood onset of slowly 
progressive cerebellar ataxia followed by oculomotor apraxia and a severe axonal sensorimotor peripheral 
neuropathy. The initial manifestation is progressive gait imbalance in childhood (age 2-10 years) that may 
be associated with chorea. All affected individuals initially have generalized areflexia that is followed later 
by a peripheral neuropathy. Cognitive impairment may be noted. The clinical phenotype of AOA1 may be 
highly variable; however, presence of chorea, severe sensorimotor neuropathy, oculomotor anomalies, and 
cerebellar atrophy on MRI and absence of the Babinski sign can help to distinguish AOA1 from FRDA [Le 
Ber et al 2003]. AOA1 is associated with biallelic pathogenic variants in APTX [Moreira et al 2001]. 
Inheritance is autosomal recessive. Because of its phenotypic similarities, this condition was initially called 
FRDA2 when the locus was mapped and before the gene was known [Christodoulou et al 2001].
AOA1 is the most common recessively inherited ataxia in Japan; in Portugal, it is second to FRDA. AOA1 
has also been reported with variable frequencies in France, Germany, Italy, Taiwan, Tunisia, and Australia 
[Le Ber et al 2005].

• Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by ataxia with onset between age ten and 
22 years, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia, choreiform or dystonic 
movement, and elevated alpha-fetoprotein (AFP) levels [Le Ber et al 2004]. It is caused by biallelic 
pathogenic variants in SETX, the gene encoding probable helicase senataxin [Moreira et al 2004]. 
Inheritance is autosomal recessive. Among Europeans, AOA2 is the most common non-FRDA autosomal 
recessive cerebellar ataxia.
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Other early-onset ataxias may be distinguishable by virtue of their characteristic clinical features (see also 
Hereditary Ataxia Overview):

• Ataxia-telangiectasia
• Ataxias associated with pathogenic variants in mitochondrial DNA (see Mitochondrial Disorders 

Overview)
• Behr syndrome (spasticity, ataxia, optic atrophy, and intellectual disability) (OMIM 210000)
• X-linked sideroblastic anemia and ataxia (OMIM 301310)
• Marinesco-Sjögren syndrome (cerebellar ataxia, cataracts, intellectual disability, short stature, and delayed 

sexual development)
• Deafness-dystonia-optic neuronopathy syndrome
• Late-onset hexosaminidase A deficiency (ataxia, upper and lower motor neuron disorders, dementia, and 

psychotic episodes) [Perlman 2002]
• Two autosomal dominant ataxias with sensory neuropathy – spinocerebellar ataxia type 4 (SCA4) 

[Flanigan et al 1996] and SCA25 [Stevanin et al 2004] – may present with FRDA-like phenotypes (see 
Hereditary Ataxia Overview).

Spasticity. Friedreich ataxia (FRDA) is rare among individuals with uncomplicated (isolated) autosomal 
recessive spastic paraparesis [Wilkinson et al 2001, Badhwar et al 2004] (see also Hereditary Spastic Paraplegia 
Overview). However, autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) may present with 
early-onset ataxia and areflexia, Babinski sign, loss of vibratory sensation, and pes cavus without spasticity 
[Shimazaki et al 2005].

Multisystem atrophy. VLOFA caused by a shorter GAA expansion allele may mimic multiple-system atrophy of 
the cerebellar type [Berciano et al 2005].

Huntington disease. Rarely, FRDA can present as a phenocopy of Huntington disease [Wild et al 2008].

Management
Guidelines have been published to assist with management of FRDA [Corben et al 2014] (www.curefa.org).

Evaluations Following Initial Diagnosis
To establish the extent of disease and needs in an individual diagnosed with Friedreich ataxia (FRDA), the 
following evaluations are recommended, if not performed as part of the evaluation that led to diagnosis:

• Neurologic assessment
• Physical therapy and occupational therapy assessment of strength and balance, need for adaptive aids, and 

the home and work environment
• Speech and swallowing assessment
• Assessment for significant scoliosis; assessment by an orthopedic surgeon, as needed
• EKG and echocardiogram for evidence of cardiomyopathy; assessment by a cardiologist if abnormal
• Bladder function with referral to a urologist if severe symptoms are present
• Assessment for obstructive sleep apnea and referral for formal assessment and management if present
• Random blood glucose concentration for evidence of diabetes mellitus
• Ophthalmologic assessment if ophthalmologic symptoms are present
• Hearing assessment and referral for amplification apparatus if required
• Psychological assessment
• Consultation with a clinical geneticist and/or genetic counselor
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Treatment of Manifestations
There is little objective evidence regarding management of FRDA. A multidisciplinary approach is essential for 
maximal benefit because FRDA affects multiple organ systems:

• Prostheses, walking aids, wheelchairs, and physical therapy as prescribed by a physiatrist (rehabilitation 
medicine specialist) to maintain an active lifestyle

• In-patient rehabilitation, which has been shown to improve physical function as measured by the 
Functional Independence Measure [Milne et al 2012]

• Occupational therapy assessment to ensure a safe home and work environment
• To manage spasticity: physical therapy including stretching programs, standing frame and splints, 

pharmacologic agents such as baclofen and botulinum toxin. Intrathecal baclofen can be beneficial where 
oral administration is unsuccessful or side effects are excessive [Berntsson et al 2013]. Orthopedic 
interventions, both operative and non-operative, for scoliosis [Milbrandt et al 2008] and foot deformities 
[Delatycki et al 2005] may be necessary.

• Speech therapy to maximize communication skills
• Management of dysphagia that may include dietary modification and, in the late stages of disease, use of 

nasogastric or gastrostomy feeding
• Treatment of cardiac disease to reduce morbidity and mortality, including antiarrhythmic agents, 

anticardiac failure medication, anticoagulants, and pacemaker / implantable cardioverter defibrillator 
insertion [Lynch et al 2012a]. Cardiac transplantation is more controversial but has been used particularly 
when there is severe cardiac disease in the setting of mild neurologic symptoms [Sedlak et al 2004, Yoon et 
al 2012, McCormick et al 2017].

• Antispasmodic agents for bladder dysfunction, with some individuals requiring botulinum toxin for the 
bladder and some requiring intermittent or permanent catheterization

• Treatment of sleep apnea by continuous positive airway pressure
• Treatment of diabetes mellitus with diet and, if necessary, oral hypoglycemic agents or insulin
• Hearing aids, microphone, and receiver as needed [Rance et al 2010] (See also Genetic Hearing Loss 

Overview.)
• Psychological (counseling and/or pharmacologic) support for affected individuals and family

Prevention of Secondary Manifestations
Measures include the following:

• Active management of spasticity with physiotherapy and botulinum toxin to prevent permanent 
contracture and the need for surgery

• Treatment of scoliosis with physiotherapy, botulinum toxin, and surgery to prevent cardiopulmonary 
complications that can result from severe scoliosis

• Treatment of diabetes mellitus to prevent complications that can arise from untreated / inadequately 
treated diabetes

• Treatment of cardiac complications of FRDA to prevent arrhythmias that can result in mortality
• Treatment of sleep apnea to prevent neurologic and cardiopulmonary complications that can result from 

untreated sleep apnea

Surveillance
Published clinical management guidelines provide detailed discussion of recommended surveillance [Corben et 
al 2014, www.curefa.org].

The following are appropriate.
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• If EKG and echocardiogram performed at the time of initial diagnosis are normal, annual repeat testing
• Annual fasting blood sugar to monitor for diabetes mellitus
• Hearing assessment every two to three years or more often if symptoms are present. This should include 

testing of hearing in background noise, as it is more often abnormal than the common audiogram assessed 
in a quiet environment [Rance et al 2008].

• Sleep study to investigate for obstructive sleep apnea if concerns are raised by clinical history or a 
screening test such as the Epworth Sleepiness Scale

Agents/Circumstances to Avoid
Alcohol can exacerbate ataxia and should be consumed in moderation. Illicit drugs may well affect neuronal 
well-being and may exacerbate FRDA and thus should be avoided. Environments that place an ambulant 
individual at risk for falls (e.g., rough surfaces) should be avoided.

Medications that are toxic or potentially toxic to persons with FRDA comprise a spectrum of risk ranging from 
definite high risk to negligible risk. See the Charcot-Marie-Tooth Association website (pdf) for an up-to-date list 
of medications that are potentially toxic to persons with CMT or a related neuropathy.

Evaluation of Relatives at Risk
See Genetic Counseling for issues related to testing of at-risk relatives for genetic counseling purposes

Pregnancy Management
Close cardiac monitoring is recommended in any woman with FRDA during pregnancy.

Therapies Under Investigation
A summary of therapies under investigation can be found online.

Deficiency of frataxin results in abnormal accumulation of intramitochondrial iron, defective mitochondrial 
respiration, and overproduction of oxygen free radicals with evidence of oxidant-induced intracellular damage 
(see Molecular Genetics).

Antioxidant therapy by free radical scavengers (coenzyme Q10, vitamin E, and idebenone, a short-chain analog 
of coenzyme Q10) and chelation therapy have been considered potential treatments for slowing the progression 
of FRDA.

Antioxidant Therapy
Coenzyme Q10 and vitamin E

• Following three to six months' antioxidant treatment with coenzyme Q10 and vitamin E, Lodi et al [2001] 
showed improved ATP production in the heart and skeletal muscle of individuals with FRDA. An open-
label trial of these agents in ten individuals for 47 months resulted in sustained improvement in 
bioenergetics and improved cardiac function, as assessed by increased fractional shortening [Hart et al 
2005].

• A study that compared low-dose coenzyme Q10 (30 mg/day) to high-dose coenzyme Q10 (600 mg/day) 
and vitamin E (2,100 IU/day) over two years found no difference in the change in International 
Cooperative Ataxia Rating Scale (ICARS) score between the two groups [Cooper et al 2008]. A significant 
proportion of individuals with FRDA had low serum coenzyme Q10 levels.

Idebenone has shown promise as a treatment for FRDA:
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• A reduction in left ventricular hypertrophy has been found in some studies [Hausse et al 2002, Buyse et al 
2003, Mariotti et al 2003] but not in others [Lagedrost et al 2011].

• A Phase II clinical trial of three doses of idebenone (5, 15, and 45 mg/kg) compared to placebo suggested a 
dose-related neurologic benefit as measured by the ICARS [Di Prospero et al 2007]. However, no 
significant neurologic benefit was shown in a Phase III study of idebenone conducted on 70 individuals 
with FRDA age eight to 18 years [Lynch et al 2010].

• The results of another Phase III study from Europe are expected to be published shortly.

A0001 (α-tocopheryl quinone) is an antioxidant with superior bioavailability to idebenone. It showed promise 
in a small one-month placebo-controlled study [Lynch et al 2012b].

EPI-743. A0001 is no longer being developed but a related compound, EPI-743, is being evaluated in placebo-
controlled studies in adults and children with FRDA. Results from this study have not yet been published.

Chelation Therapy
Iron chelators have been proposed as a possible therapy for lowering the intramitochondrial iron overload. 
Nonspecific iron chelators (e.g., desferrioxamine) for the specific reduction of mitochondrial iron overload may 
not be effective; a clinical trial was terminated for lack of efficacy.

The oral iron chelator deferiprone showed promise as a treatment for FRDA in an open-label study [Boddaert et 
al 2007]. Iron in the cerebellar dentate nucleus was reduced as measured by MRI; neurologic benefit was 
suggested. However, a Phase II placebo-controlled study of deferiprone demonstrated worsening of ataxia in 
those treated with 40 mg/kg/day with reduced left ventricular mass index in those on 20 and 40 mg/kg/day 
[Pandolfo et al 2014].

An 11-month open-labeled study of combined low-dose deferiprone and low-dose idebenone (both given at 20 
mg/kg/day) found a significant reduction in intraventricular septum thickness and left ventricular mass index 
over the course of the study [Velasco-Sánchez et al 2011]. Although there was no significant change in the 
International Cooperative Ataxia Rating Scale score, some subscale scores showed significant increases and 
others showed significant decreases over the course of the study.

Desferrioxamine along with pyridoxal isonicotinoyl hydrazone, a mitochondrial permeable ligand, limited 
cardiac hypertrophy in a conditional Fxn knockout mouse model [Whitnall et al 2008].

Increasing Frataxin Levels
Because the abnormal GAA repeat expansion results in reduced quantities of normal FXN transcript and 
frataxin protein, a number of studies have been conducted to identify compounds that increase their levels. This 
is achieved mainly by increasing FXN expression and stabilizing the FXN transcript and frataxin protein. In 
some cases the exact mechanism underlying the increase in frataxin levels is not yet understood. Agents that 
have been found to increase frataxin levels in cellular models include hemin, butyric acid [Sarsero et al 2003], 
and erythropoietin [Sturm et al 2005].

• An open-label study of erythropoietin resulted in increased frataxin levels and significant decrease in the 
levels of urinary 8-hydroxydeoxyguanosine and serum peroxides, which are markers of oxidative stress 
[Boesch et al 2007].

• An in vitro study showed that carbamylated erythropoietin, which does not bind to the erythropoietin 
receptor and therefore is non-erythropoietic, increased frataxin to levels similar to native erythropoietin 
[Sturm et al 2010]. A Phase II study of carbamylated erythropoietin did not identify any clinical benefit 
nor evidence of increase in frataxin levels after 43 days' treatment [Boesch et al 2014].

• A small six-month placebo-controlled study of erythropoietin did not identify any biochemical or clinical 
benefit of treatment [Mariotti et al 2012].
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• A placebo-controlled study of epoetin alfa did not identify benefit for peak oxygen uptake in an exercise 
test, frataxin levels nor neurologic outcomes [Saccà et al 2016].

Specific histone deacetylase (HDAC) inhibitors show much promise as treatments for FRDA through 
upregulation of FXN expression [Herman et al 2006, Libri et al 2014, Soragni et al 2014]. A Phase I human trial 
of RG2833, a class I HDAC inhibitor molecule that is known to reverse the epigenetic silencing in FRDA 
[Soragni et al 2014, Chutake et al 2016], was shown to be well tolerated and resulted in increased production of 
FXN transcript in vivo [Soragni et al 2014]. Nicotinamide (vitamin B3), a class III HDAC inhibitor, was shown to 
increase frataxin expression in FRDA cell and mouse models [Chan et al 2013]. An open-label dose escalation 
study of nicotinimide in FRDA showed a dose-dependent increase in FXN transcript and protein, achieving 
levels seen in asymptomatic carriers [Libri et al 2014]. However, no changes were observed in clinical measures 
in this short eight-week trial.

Interferon gamma upregulated frataxin in cell and mouse models of FRDA [Tomassini et al 2012]. It also 
prevents pathologic changes in dorsal root ganglia and improves motor performance in a FRDA mouse model. 
An open-label study of interferon gamma showed evidence of neurologic improvement as assessed by FARS 
score, without any increase in frataxin levels [Seyer et al 2015]. A placebo-controlled study was subsequently 
performed and failed to meet its primary end point [Author, personal communication].

Resveratrol has also been shown to upregulate frataxin expression in vitro and in vivo [Li et al 2013]. An open-
label study of 1 g/day and 5 g/day of resveratrol for three months did not result in increased lymphocyte frataxin 
levels [Yiu et al 2015]. Those on 5 g/day had significant improvement in a number of neurologic tests and in the 
oxidative stress marker F2-isoprostanes. A placebo-controlled study is to commence shortly.

Other Therapies
Varenicline, an agent used to assist with smoking cessation, was identified as a possible therapy for ataxia 
[Zesiewicz et al 2009]; however, a Phase II study was prematurely terminated because of concerns about safety 
and tolerability of the drug.

PPAR gamma agonists have been suggested as therapies for FRDA because they increase frataxin levels in vitro 
[Marmolino et al 2009] and improve antioxidant responses [Marmolino et al 2010]. A Phase II study of one 
PPAR gamma agonist, pioglitazone, is under way.

An open-label study of thiamine (vitamin B1) in 34 individuals with FRDA (100 mg intramuscular 2x/week for 
between 80 and 930 days) revealed improvement of neurologic symptoms as measured by SARA, reappearance 
of deep tendon reflexes in 57%, and reduction in intraventricular septal thickness [Costantini et al 2016].

Gene therapy to supplement the loss of function of frataxin is also under consideration. The cardiomyopathy of 
a conditional cardiac FXN deletion mouse model was both prevented and reversed by intravenous FXN 
delivered by an adeno-associated virus vector [Perdomini et al 2014].

Search ClinicalTrials.gov in the US and EU Clinical Trials Register in Europe for access to information on 
clinical studies for a wide range of diseases and conditions.

Genetic Counseling
Genetic counseling is the process of providing individuals and families with information on the nature, mode(s) of 
inheritance, and implications of genetic disorders to help them make informed medical and personal decisions. The 
following section deals with genetic risk assessment and the use of family history and genetic testing to clarify genetic 
status for family members; it is not meant to address all personal, cultural, or ethical issues that may arise or to 
substitute for consultation with a genetics professional. —ED.
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Mode of Inheritance
Friedreich ataxia (FRDA) is inherited in an autosomal recessive manner.

Risk to Family Members
Parents of a proband

• The parents of an affected individual are obligate heterozygotes (i.e., carriers of an FXN pathogenic 
variant).

• Depending on the pathogenic variants present in the proband, each parent may have one of the following:
⚬ A pathogenic expanded allele (i.e., a GAA trinucleotide repeat allele that is in the disease-causing 

range)
⚬ Another deleterious FXN pathogenic variant
⚬ A premutation allele (i.e., a GAA trinucleotide repeat allele that is predisposed to expand into the 

abnormal range)
• Carriers (heterozygotes) of one FXN pathogenic variant are asymptomatic.
• Note: Carriers of premutation alleles are rare and, although their exact prevalence is unknown, they are far 

less common than carriers of pathogenic expanded alleles. Consequently, expansion of premutation alleles 
as a means of transmitting FRDA is very unusual.

Sibs of a proband

• If both parents carry a full-penetrance allele, or one parent carries a full-penetrance allele and the other 
parent carries another pathogenic FXN variant,
⚬ At conception, each sib has a 25% chance of being affected, a 50% chance of being an asymptomatic 

carrier, and a 25% chance of being unaffected and not a carrier.
⚬ If an adult at-risk sib is unaffected, the statistical risk of the sib being a carrier is 2/3. However, the 

wide range in age of onset and variable intergenerational instability of the GAA expansion dictate 
the use of caution in diagnosing an at-risk sib as unaffected based on clinical findings alone (i.e., 
without using molecular genetic testing).

• When one parent carries a full-penetrance allele or another pathogenic FXN variant and the other parent 
carries a premutation allele, sibs have a less-than-25% chance of being affected.

Offspring of a proband

• All offspring inherit one pathogenic FXN allele from the affected parent.
• Offspring have a 50% chance of being affected only if the reproductive partner of the proband is a carrier 

of a full-penetrance allele or another pathogenic FXN variant.
• If the reproductive partner of the proband carries a premutation allele, the risk to each offspring of 

developing FRDA is less than 50%.
• If the reproductive partner of the proband does not carry an expanded FXN allele, the risk to each 

offspring of developing FRDA is very low but not zero because of the possibility of the presence of another 
FXN pathogenic variant.

Carrier (Heterozygote) Detection
Carrier testing for at-risk relatives requires prior identification of the FXN pathogenic variants in the family.

Carrier testing is possible for individuals whose reproductive partner is a known carrier of a FXN pathogenic 
variant.
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Note: Carriers of one FRDA-causing variant of FXN are not at risk of developing this autosomal recessive 
disorder.

Related Genetic Counseling Issues
Family planning

• The optimal time for determination of genetic risk, clarification of carrier status, and discussion of the 
availability of prenatal/preimplantation genetic testing is before pregnancy.

• It is appropriate to offer genetic counseling (including discussion of potential risks to offspring and 
reproductive options) to young adults who are affected, are carriers, or are at risk of being carriers.

DNA banking. Because it is likely that testing methodology and our understanding of genes, pathogenic 
mechanisms, and diseases will improve in the future, consideration should be given to banking DNA from 
probands in whom a molecular diagnosis has not been confirmed (i.e., the causative pathogenic mechanism is 
unknown. For more information, see Huang et al [2022].

Prenatal Testing and Preimplantation Genetic Testing
Once the FXN pathogenic variants have been identified in an affected family member, prenatal and 
preimplantation genetic testing are possible.

Resources
GeneReviews staff has selected the following disease-specific and/or umbrella support organizations and/or registries 
for the benefit of individuals with this disorder and their families. GeneReviews is not responsible for the 
information provided by other organizations. For information on selection criteria, click here.

• FARA
Friedreich's Ataxia Research Alliance
Phone: 484-879-6160
Fax: 484-872-1402
Email: info@CureFA.org
CureFA.org

• FARA (Australasia)
Friedreich Ataxia Research Association
Australia
Email: info@fara.org.au
www.fara.org.au

• MedlinePlus
Friedreich Ataxia

• NCBI Genes and Disease
Friedreich's ataxia

• Ataxia UK
United Kingdom
Phone: 0800 995 6037; +44 (0) 20 7582 1444 (from abroad)
Email: help@ataxia.org.uk
www.ataxia.org.uk
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• euro-ATAXIA (European Federation of Hereditary Ataxias)
United Kingdom
Email: lporter@ataxia.org.uk
www.euroataxia.org

• Muscular Dystrophy Association (MDA) - USA
Phone: 833-275-6321
www.mda.org

• National Ataxia Foundation
Phone: 763-553-0020
Fax: 763-553-0167
Email: naf@ataxia.org
www.ataxia.org

• Spanish Ataxia Federation (FEDAES)
Spain
Phone: 601 037 982
Email: info@fedaes.org
fedaes.org

• CoRDS Registry
Sanford Research
Phone: 605-312-6300
CoRDS Registry

• EFACTS Patient Registry
European Friedreich’s Ataxia Consortium for Translational Studies
EFACTS Patient Registry

• Friedreich's Ataxia Global Patient Registry
Friedreich's Ataxia Research Alliance
Email: info@CureFA.org
Patient Registry

Molecular Genetics
Information in the Molecular Genetics and OMIM tables may differ from that elsewhere in the GeneReview: tables 
may contain more recent information. —ED.

Table A. Friedreich Ataxia: Genes and Databases

Gene Chromosome Locus Protein Locus-Specific 
Databases

HGMD ClinVar

FXN 9q21.11 Frataxin, mitochondrial FXN database FXN FXN

Data are compiled from the following standard references: gene from HGNC; chromosome locus from OMIM; protein from UniProt. 
For a description of databases (Locus Specific, HGMD, ClinVar) to which links are provided, click here.

Table B. OMIM Entries for Friedreich Ataxia (View All in OMIM)

229300 FRIEDREICH ATAXIA; FRDA

606829 FRATAXIN; FXN
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Gene structure. FXN encodes frataxin via a major transcript (NM_000144.4) composed of five coding exons 
(1-5a) [Campuzano et al 1996]. Minor transcripts, produced via alternate splicing with two other exons (5b and 
6), have been detected, but their role(s) remain unknown. For a detailed summary of gene and protein 
information, see Table A, Gene.

Benign variants. The most relevant variability in normal FXN alleles is the length of the GAA repeat sequence 
in intron 1 (see Establishing the Diagnosis, Allele sizes).

Pathogenic variants. Inactivating pathogenic variants in FXN are essentially of three types: the GAA repeat 
expansion, nonsense or frameshift variants resulting in aberrant or premature termination of translation, and 
loss-of-function missense and splicing variants. Rare affected individuals have been identified with one allele 
having either a large intragenic deletion or whole-gene deletion of FXN and the second allele with a full-
penetrance expanded GAA repeat [Zühlke et al 2004, Anheim et al 2012, Hoffman-Zacharska et al 2016]. See 
Establishing the Diagnosis for explanation of the four classes of GAA repeats.

Note that interpretation of the pathogenicity of expanded alleles may be complicated by the possibility that the 
size of the expanded GAA trinucleotide repeat in leukocytes may not necessarily be the same as that in 
pathologically relevant tissues such as the dorsal root ganglia and heart. Some differences in allele lengths were 
noted between different tissues in a study involving six autopsies; however, larger studies will be needed to 
uncover any consistent correlation between GAA repeat sizes in blood versus pathologically affected tissues [De 
Biase et al 2007].

Normal gene product. FXN encodes frataxin, a 210-amino acid protein (NP_000135.2) that is predominantly 
located in the mitochondria. The carboxy-terminal region of frataxin is highly conserved in evolution and is a 
target for pathogenic missense variants. The tissues primarily affected in FRDA are known to express high levels 
of frataxin. Frataxin binds iron and is required for the synthesis of iron-sulfur clusters and, thereby, for the 
synthesis of enzymes in the respiratory chain complexes I–III and aconitase.

Abnormal gene product. All pathogenic variants (i.e., GAA repeat expansion, nonsense or frameshift variants 
resulting in aberrant or premature termination of translation, and loss-of-function missense variants) result in 
loss of frataxin function. The latter two classes of pathogenic variant result either in deficiency of frataxin levels 
or in functional deficiency of frataxin despite normal levels. The expanded GAA repeat results in transcriptional 
silencing of FXN via at least two mechanisms:

• Epigenetic silencing via repressive chromatin formation in the sequence flanking the expanded GAA 
repeat and near the FXN promoter and transcription start site, which interfere with both transcriptional 
initiation and elongation [Herman et al 2006, Kumari et al 2011, Evans-Galea et al 2012, Chutake et al 
2014a, Chutake et al 2014b, Li et al 2015]

• Formation of one or more abnormal DNA structures, which interferes with transcriptional elongation 
[Bidichandani et al 1998, Ohshima et al 1998, Grabczyk & Usdin 2000, Sakamoto et al 2001]

These pathogenic mechanisms result in deficiency of FXN transcript levels and ultimately in deficiency of 
frataxin protein. Frataxin deficiency results in secondary deficiency of iron-sulfur cluster-containing enzymes, 
mislocalization of cellular iron, and increased sensitivity to oxidative stress. Together these result in impaired 
mitochondrial respiratory function and increased oxidative stress. Indeed, the deficiency of frataxin is directly 
proportional to the length of the expanded GAA repeat [Pianese et al 2004; Chutake et al 2014b], which is the 
molecular basis for the correlation of repeat length with disease severity and rate of progression.
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